Asymptotic enumeration and limit laws of planar graphs
Journal of the American Mathematical Society, Tome 22 (2009) no. 2, pp. 309-329

Voir la notice de l'article provenant de la source American Mathematical Society

We present a complete analytic solution to the problem of counting planar graphs. We prove an estimate $g_n \sim g\cdot n^{-7/2} \gamma ^n n!$ for the number $g_n$ of labelled planar graphs on $n$ vertices, where $\gamma$ and $g$ are explicit computable constants. We show that the number of edges in random planar graphs is asymptotically normal with linear mean and variance and, as a consequence, the number of edges is sharply concentrated around its expected value. Moreover we prove an estimate $g(q)\cdot n^{-4}\gamma (q)^n n!$ for the number of planar graphs with $n$ vertices and $\lfloor qn \rfloor$ edges, where $\gamma (q)$ is an analytic function of $q$. We also show that the number of connected components in a random planar graph is distributed asymptotically as a shifted Poisson law $1+P(\nu )$, where $\nu$ is an explicit constant. Additional Gaussian and Poisson limit laws for random planar graphs are derived. The proofs are based on singularity analysis of generating functions and on perturbation of singularities.
DOI : 10.1090/S0894-0347-08-00624-3

Giménez, Omer 1 ; Noy, Marc 2

1 Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya, Jordi Girona 1–3, 08034 Barcelona, Spain
2 Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya, Jordi Girona 1–3, 08034 Barcelona, Spain
@article{10_1090_S0894_0347_08_00624_3,
     author = {Gim\~A{\textcopyright}nez, Omer and Noy, Marc},
     title = {Asymptotic enumeration and limit laws of planar graphs},
     journal = {Journal of the American Mathematical Society},
     pages = {309--329},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2009},
     doi = {10.1090/S0894-0347-08-00624-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00624-3/}
}
TY  - JOUR
AU  - Giménez, Omer
AU  - Noy, Marc
TI  - Asymptotic enumeration and limit laws of planar graphs
JO  - Journal of the American Mathematical Society
PY  - 2009
SP  - 309
EP  - 329
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00624-3/
DO  - 10.1090/S0894-0347-08-00624-3
ID  - 10_1090_S0894_0347_08_00624_3
ER  - 
%0 Journal Article
%A Giménez, Omer
%A Noy, Marc
%T Asymptotic enumeration and limit laws of planar graphs
%J Journal of the American Mathematical Society
%D 2009
%P 309-329
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00624-3/
%R 10.1090/S0894-0347-08-00624-3
%F 10_1090_S0894_0347_08_00624_3
Giménez, Omer; Noy, Marc. Asymptotic enumeration and limit laws of planar graphs. Journal of the American Mathematical Society, Tome 22 (2009) no. 2, pp. 309-329. doi: 10.1090/S0894-0347-08-00624-3

[1] Bender, Edward A., Gao, Zhicheng, Wormald, Nicholas C. The number of labeled 2-connected planar graphs Electron. J. Combin. 2002

[2] Bodirsky, Manuel, Gimã©Nez, Omer, Kang, Mihyun, Noy, Marc Enumeration and limit laws for series-parallel graphs European J. Combin. 2007 2091 2105

[3] Bonichon, Nicolas, Gavoille, Cyril, Hanusse, Nicolas, Poulalhon, Dominique, Schaeffer, Gilles Planar graphs, via well-orderly maps and trees Graphs Combin. 2006 185 202

[4] Denise, Alain, Vasconcellos, Marcio, Welsh, Dominic J. A. The random planar graph Congr. Numer. 1996 61 79

[5] Flajolet, Philippe, Odlyzko, Andrew Singularity analysis of generating functions SIAM J. Discrete Math. 1990 216 240

[6] Fusy, ÉRic Quadratic exact-size and linear approximate-size random generation of planar graphs 2005 125 138

[7] Gerke, Stefanie, Mcdiarmid, Colin On the number of edges in random planar graphs Combin. Probab. Comput. 2004 165 183

[8] Gerke, Stefanie, Mcdiarmid, Colin, Steger, Angelika, WeiãŸL, Andreas Random planar graphs with given average degree 2007 83 102

[9] Gimã©Nez, Omer, Noy, Marc Estimating the growth constant of labelled planar graphs 2004 133 139

[10] Harary, Frank, Palmer, Edgar M. Graphical enumeration 1973

[11] Mcdiarmid, Colin, Steger, Angelika, Welsh, Dominic J. A. Random planar graphs J. Combin. Theory Ser. B 2005 187 205

[12] Mullin, R. C., Schellenberg, P. J. The enumeration of 𝑐-nets via quadrangulations J. Combinatorial Theory 1968 259 276

[13] Osthus, Deryk, Prã¶Mel, Hans Jã¼Rgen, Taraz, Anusch On random planar graphs, the number of planar graphs and their triangulations J. Combin. Theory Ser. B 2003 119 134

[14] Trahtenbrot, B. A. The theory of non-repeating contact schemes Trudy Mat. Inst. Steklov. 1958 226 269

[15] Turã¡N, Gyã¶Rgy On the succinct representation of graphs Discrete Appl. Math. 1984 289 294

[16] Tutte, W. T. A census of planar triangulations Canadian J. Math. 1962 21 38

[17] Tutte, W. T. A census of planar maps Canadian J. Math. 1963 249 271

[18] Tutte, W. T. Connectivity in graphs 1966

[19] Walsh, T. R. S. Counting labelled three-connected and homeomorphically irreducible two-connected graphs J. Combin. Theory Ser. B 1982 1 11

[20] Whitney, Hassler Congruent Graphs and the Connectivity of Graphs Amer. J. Math. 1932 150 168

Cité par Sources :