Betti numbers of graded modules and cohomology of vector bundles
Journal of the American Mathematical Society, Tome 22 (2009) no. 3, pp. 859-888

Voir la notice de l'article provenant de la source American Mathematical Society

In the remarkable paper Graded Betti numbers of Cohen-Macaulay modules and the multiplicity conjecture, Mats Boij and Jonas Söderberg conjectured that the Betti table of a Cohen-Macaulay module over a polynomial ring is a positive linear combination of Betti tables of modules with pure resolutions. We prove a strengthened form of their conjectures. Applications include a proof of the Multiplicity Conjecture of Huneke and Srinivasan and a proof of the convexity of a fan naturally associated to the Young lattice. With the same tools we show that the cohomology table of any vector bundle on projective space is a positive rational linear combination of the cohomology tables of what we call supernatural vector bundles. Using this result we give new bounds on the slope of a vector bundle in terms of its cohomology.
DOI : 10.1090/S0894-0347-08-00620-6

Eisenbud, David 1 ; Schreyer, Frank-Olaf 2

1 Department of Mathematics, University of California, Berkeley, Berkeley, California 94720
2 Mathematik und Informatik, Universität des Saarlandes, Campus E2 4, D-66123 Saarbrücken, Germany
@article{10_1090_S0894_0347_08_00620_6,
     author = {Eisenbud, David and Schreyer, Frank-Olaf},
     title = {Betti numbers of graded modules and cohomology of vector bundles},
     journal = {Journal of the American Mathematical Society},
     pages = {859--888},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2009},
     doi = {10.1090/S0894-0347-08-00620-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00620-6/}
}
TY  - JOUR
AU  - Eisenbud, David
AU  - Schreyer, Frank-Olaf
TI  - Betti numbers of graded modules and cohomology of vector bundles
JO  - Journal of the American Mathematical Society
PY  - 2009
SP  - 859
EP  - 888
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00620-6/
DO  - 10.1090/S0894-0347-08-00620-6
ID  - 10_1090_S0894_0347_08_00620_6
ER  - 
%0 Journal Article
%A Eisenbud, David
%A Schreyer, Frank-Olaf
%T Betti numbers of graded modules and cohomology of vector bundles
%J Journal of the American Mathematical Society
%D 2009
%P 859-888
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00620-6/
%R 10.1090/S0894-0347-08-00620-6
%F 10_1090_S0894_0347_08_00620_6
Eisenbud, David; Schreyer, Frank-Olaf. Betti numbers of graded modules and cohomology of vector bundles. Journal of the American Mathematical Society, Tome 22 (2009) no. 3, pp. 859-888. doi: 10.1090/S0894-0347-08-00620-6

[1] Buchsbaum, David A., Eisenbud, David Remarks on ideals and resolutions 1973 193 204

[2] Buchsbaum, David A., Eisenbud, David What makes a complex exact? J. Algebra 1973 259 268

[3] Eisenbud, David Commutative algebra 1995

[4] Eisenbud, David, Flã¸Ystad, Gunnar, Schreyer, Frank-Olaf Sheaf cohomology and free resolutions over exterior algebras Trans. Amer. Math. Soc. 2003 4397 4426

[5] Eisenbud, David, Schreyer, Frank-Olaf Resultants and Chow forms via exterior syzygies J. Amer. Math. Soc. 2003 537 579

[6] Francisco, Christopher A., Srinivasan, Hema Multiplicity conjectures 2007 145 178

[7] Hartshorne, Robin, Hirschowitz, Andr㩠Cohomology of a general instanton bundle Ann. Sci. École Norm. Sup. (4) 1982 365 390

[8] Herzog, J., Kã¼Hl, M. On the Betti numbers of finite pure and linear resolutions Comm. Algebra 1984 1627 1646

[9] Herzog, Jã¼Rgen, Srinivasan, Hema Bounds for multiplicities Trans. Amer. Math. Soc. 1998 2879 2902

[10] Kirby, D. A sequence of complexes associated with a matrix J. London Math. Soc. (2) 1974 523 530

[11] Mukai, Shigeru Curves and symmetric spaces Proc. Japan Acad. Ser. A Math. Sci. 1992 7 10

[12] Peskine, C., Szpiro, L. Dimension projective finie et cohomologie locale. Applications à la démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck Inst. Hautes Études Sci. Publ. Math. 1973 47 119

[13] Schreyer, Frank-Olaf Syzygies of canonical curves and special linear series Math. Ann. 1986 105 137

[14] Weyman, Jerzy Cohomology of vector bundles and syzygies 2003

Cité par Sources :