Asymmetry of near-critical percolation interfaces
Journal of the American Mathematical Society, Tome 22 (2009) no. 3, pp. 797-819

Voir la notice de l'article provenant de la source American Mathematical Society

We study the possible scaling limits of percolation interfaces in two dimensions on the triangular lattice. When one lets the percolation parameter $p(N)$ vary with the size $N$ of the box that one is considering, three possibilities arise in the large-scale limit. It is known that when $p(N)$ does not converge to $1/2$ fast enough, then the scaling limits are degenerate, whereas if $p(N) - 1 / 2$ goes to zero quickly, the scaling limits are SLE(6) as when $p=1/2$. We study some properties of the (non-void) intermediate regime where the large scale behavior is neither SLE(6) nor degenerate. We prove that in this case, the law of any scaling limit is singular with respect to that of SLE(6), even if it is still supported on the set of curves with Hausdorff dimension equal to $7/4$.
DOI : 10.1090/S0894-0347-08-00619-X

Nolin, Pierre 1 ; Werner, Wendelin 1

1 DMA, École Normale Supérieure, 45 rue d’Ulm, 75230 Paris Cedex 05, France, and Laboratoire de Mathématiques, Bât. 425, Université Paris-Sud 11, 91405 Orsay Cedex, France
@article{10_1090_S0894_0347_08_00619_X,
     author = {Nolin, Pierre and Werner, Wendelin},
     title = {Asymmetry of near-critical percolation interfaces},
     journal = {Journal of the American Mathematical Society},
     pages = {797--819},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2009},
     doi = {10.1090/S0894-0347-08-00619-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00619-X/}
}
TY  - JOUR
AU  - Nolin, Pierre
AU  - Werner, Wendelin
TI  - Asymmetry of near-critical percolation interfaces
JO  - Journal of the American Mathematical Society
PY  - 2009
SP  - 797
EP  - 819
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00619-X/
DO  - 10.1090/S0894-0347-08-00619-X
ID  - 10_1090_S0894_0347_08_00619_X
ER  - 
%0 Journal Article
%A Nolin, Pierre
%A Werner, Wendelin
%T Asymmetry of near-critical percolation interfaces
%J Journal of the American Mathematical Society
%D 2009
%P 797-819
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00619-X/
%R 10.1090/S0894-0347-08-00619-X
%F 10_1090_S0894_0347_08_00619_X
Nolin, Pierre; Werner, Wendelin. Asymmetry of near-critical percolation interfaces. Journal of the American Mathematical Society, Tome 22 (2009) no. 3, pp. 797-819. doi: 10.1090/S0894-0347-08-00619-X

[1] Aizenman, Michael Scaling limit for the incipient spanning clusters 1998 1 24

[2] Aizenman, M., Burchard, A. Hölder regularity and dimension bounds for random curves Duke Math. J. 1999 419 453

[3] Borgs, C., Chayes, J. T., Kesten, H., Spencer, J. The birth of the infinite cluster: finite-size scaling in percolation Comm. Math. Phys. 2001 153 204

[4] Camia, Federico, Newman, Charles M. Two-dimensional critical percolation: the full scaling limit Comm. Math. Phys. 2006 1 38

[5] Camia, Federico, Newman, Charles M. Critical percolation exploration path and 𝑆𝐿𝐸₆: a proof of convergence Probab. Theory Related Fields 2007 473 519

[6] Camia, Federico, Fontes, Luiz Renato G., Newman, Charles M. The scaling limit geometry of near-critical 2D percolation J. Stat. Phys. 2006 1159 1175

[7] Camia, Federico, Fontes, Luiz Renato G., Newman, Charles M. Two-dimensional scaling limits via marked nonsimple loops Bull. Braz. Math. Soc. (N.S.) 2006 537 559

[8] Chayes, J. T. Finite-size scaling in percolation Doc. Math. 1998 113 122

[9] Chayes, J. T., Chayes, L., Frã¶Hlich, J. The low-temperature behavior of disordered magnets Comm. Math. Phys. 1985 399 437

[10] Chayes, J. T., Chayes, L., Fisher, Daniel S., Spencer, T. Finite-size scaling and correlation lengths for disordered systems Phys. Rev. Lett. 1986 2999 3002

[11] Grimmett, Geoffrey Percolation 1999

[12] Kesten, Harry Percolation theory for mathematicians 1982

[13] Kesten, Harry Scaling relations for 2D-percolation Comm. Math. Phys. 1987 109 156

[14] Lawler, Gregory F. Conformally invariant processes in the plane 2005

[15] Lawler, Gregory F., Schramm, Oded, Werner, Wendelin Values of Brownian intersection exponents. I. Half-plane exponents Acta Math. 2001 237 273

[16] Lawler, Gregory F., Schramm, Oded, Werner, Wendelin Values of Brownian intersection exponents. I. Half-plane exponents Acta Math. 2001 237 273

[17] Lawler, Gregory F., Schramm, Oded, Werner, Wendelin One-arm exponent for critical 2D percolation Electron. J. Probab. 2002

[18] Lawler, Gregory, Schramm, Oded, Werner, Wendelin Conformal restriction: the chordal case J. Amer. Math. Soc. 2003 917 955

[19] Schramm, Oded Scaling limits of loop-erased random walks and uniform spanning trees Israel J. Math. 2000 221 288

[20] Smirnov, Stanislav Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits C. R. Acad. Sci. Paris Sér. I Math. 2001 239 244

[21] Smirnov, Stanislav Towards conformal invariance of 2D lattice models 2006 1421 1451

[22] Smirnov, Stanislav, Werner, Wendelin Critical exponents for two-dimensional percolation Math. Res. Lett. 2001 729 744

[23] Werner, Wendelin Random planar curves and Schramm-Loewner evolutions 2004 107 195

[24] Werner, Wendelin The conformally invariant measure on self-avoiding loops J. Amer. Math. Soc. 2008 137 169

Cité par Sources :