Corps de nombres peu ramifiés et formes automorphes autoduales
Journal of the American Mathematical Society, Tome 22 (2009) no. 2, pp. 467-519

Voir la notice de l'article provenant de la source American Mathematical Society

Let $S$ be a finite set of primes, $p$ in $S$, and $\mathbb {Q}_S$ a maximal algebraic extension of $\mathbb {Q}$ unramified outside $S$ and $\infty$. Assume that $|S|\geq 2$. We show that the natural maps \[ \operatorname {Gal}(\overline {\mathbb {Q}_p}/\mathbb {Q}_p) \rightarrow \operatorname {Gal}(\mathbb {Q}_S/\mathbb {Q})\] are injective. Much of the paper is devoted to the problem of constructing self-dual automorphic cuspidal representations of $\operatorname {GL}(2n,\mathbb {A}_{\mathbb {Q}})$ with prescribed properties at all places, which we study via Arthur’s twisted trace formula. The techniques we develop also shed some light on the orthogonal/symplectic alternative for self-dual representations of $\operatorname {GL}(2n)$.
DOI : 10.1090/S0894-0347-08-00617-6

Chenevier, G. 1 ; Clozel, L. 2

1 Laboratoire Analyse, Géométrie et Applications, UMR 7539, Institut Galilée, Université Paris 13, 99 Av. J-B. Clément, 93430 Villetaneuse, France
2 Centre d’Orsay Mathematique, Université Paris XI, Batiment 425, 91405 Orsay Cedex France
@article{10_1090_S0894_0347_08_00617_6,
     author = {Chenevier, G. and Clozel, L.},
     title = {Corps de nombres peu {ramifi\~A{\textcopyright}s} et formes automorphes autoduales},
     journal = {Journal of the American Mathematical Society},
     pages = {467--519},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2009},
     doi = {10.1090/S0894-0347-08-00617-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00617-6/}
}
TY  - JOUR
AU  - Chenevier, G.
AU  - Clozel, L.
TI  - Corps de nombres peu ramifiés et formes automorphes autoduales
JO  - Journal of the American Mathematical Society
PY  - 2009
SP  - 467
EP  - 519
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00617-6/
DO  - 10.1090/S0894-0347-08-00617-6
ID  - 10_1090_S0894_0347_08_00617_6
ER  - 
%0 Journal Article
%A Chenevier, G.
%A Clozel, L.
%T Corps de nombres peu ramifiés et formes automorphes autoduales
%J Journal of the American Mathematical Society
%D 2009
%P 467-519
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00617-6/
%R 10.1090/S0894-0347-08-00617-6
%F 10_1090_S0894_0347_08_00617_6
Chenevier, G.; Clozel, L. Corps de nombres peu ramifiés et formes automorphes autoduales. Journal of the American Mathematical Society, Tome 22 (2009) no. 2, pp. 467-519. doi: 10.1090/S0894-0347-08-00617-6

[1] Arthur, James The invariant trace formula. I. Local theory J. Amer. Math. Soc. 1988 323 383

[2] Arthur, James The invariant trace formula. II. Global theory J. Amer. Math. Soc. 1988 501 554

[3] Arthur, James The local behaviour of weighted orbital integrals Duke Math. J. 1988 223 293

[4] Arthur, James An introduction to the trace formula 2005 1 263

[5] Arthur, James, Clozel, Laurent Simple algebras, base change, and the advanced theory of the trace formula 1989

[6] Bernstein, J. N. Le “centre” de Bernstein 1984 1 32

[7] Borel, A., Labesse, J.-P., Schwermer, J. On the cuspidal cohomology of 𝑆-arithmetic subgroups of reductive groups over number fields Compositio Math. 1996 1 40

[8] Borel, Armand, Wallach, Nolan R. Continuous cohomology, discrete subgroups, and representations of reductive groups 1980

[9] Bouaziz, Abderrazak Sur les caractères des groupes de Lie réductifs non connexes J. Funct. Anal. 1987 1 79

[10] Bruhat, F., Tits, J. Groupes réductifs sur un corps local Inst. Hautes Études Sci. Publ. Math. 1972 5 251

[11] Casselman, W. A new nonunitarity argument for 𝑝-adic representations J. Fac. Sci. Univ. Tokyo Sect. IA Math. 1981

[12] Chenevier, Gaã«Tan On number fields with given ramification Compos. Math. 2007 1359 1373

[13] Clozel, L. Théorème d’Atiyah-Bott pour les variétés 𝔭-adiques et caractères des groupes réductifs Mém. Soc. Math. France (N.S.) 1984 39 64

[14] Clozel, Laurent Motifs et formes automorphes: applications du principe de fonctorialité 1990 77 159

[15] Clozel, Laurent, Delorme, Patrick Le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs. II Ann. Sci. École Norm. Sup. (4) 1990 193 228

[16] Harris, Michael, Taylor, Richard The geometry and cohomology of some simple Shimura varieties 2001

[17] Henniart, Guy La conjecture de Langlands locale pour 𝐺𝐿(3) Mém. Soc. Math. France (N.S.) 1984 186

[18] Hitta, Amara On the continuous (co)homology of locally profinite groups and the Künneth theorem J. Algebra 1994 481 494

[19] Kottwitz, Robert E. Tamagawa numbers Ann. of Math. (2) 1988 629 646

[20] Kottwitz, Robert E. Rational conjugacy classes in reductive groups Duke Math. J. 1982 785 806

[21] Kottwitz, Robert E., Rogawski, Jonathan D. The distributions in the invariant trace formula are supported on characters Canad. J. Math. 2000 804 814

[22] Kottwitz, Robert E., Shelstad, Diana Foundations of twisted endoscopy Astérisque 1999

[23] Labesse, Jean-Pierre Cohomologie, stabilisation et changement de base Astérisque 1999

[24] Labesse, J.-P. Pseudo-coefficients très cuspidaux et 𝐾-théorie Math. Ann. 1991 607 616

[25] Langlands, R. P. Automorphic representations, Shimura varieties, and motives. Ein Märchen 1979 205 246

[26] Mezo, Paul Twisted trace Paley-Wiener theorems for special and general linear groups Compos. Math. 2004 205 227

[27] Neukirch, Jã¼Rgen, Schmidt, Alexander, Wingberg, Kay Cohomology of number fields 2000

[28] Rogawski, J. D. Trace Paley-Wiener theorem in the twisted case Trans. Amer. Math. Soc. 1988 215 229

[29] Serre, Jean-Pierre Cohomologie des groupes discrets 1971 77 169

[30] Serre, Jean-Pierre Répartition asymptotique des valeurs propres de l’opérateur de Hecke 𝑇_{𝑝} J. Amer. Math. Soc. 1997 75 102

[31] Shahidi, Freydoon A proof of Langlands’ conjecture on Plancherel measures Ann. of Math. (2) 1990 273 330

[32] Shahidi, Freydoon Twisted endoscopy and reducibility of induced representations for 𝑝-adic groups Duke Math. J. 1992 1 41

[33] Shelstad, D. Characters and inner forms of a quasi-split group over 𝑅 Compositio Math. 1979 11 45

[34] Taylor, Richard Galois representations Ann. Fac. Sci. Toulouse Math. (6) 2004 73 119

[35] Taylor, Richard, Yoshida, Teruyoshi Compatibility of local and global Langlands correspondences J. Amer. Math. Soc. 2007 467 493

[36] Tits, J. Reductive groups over local fields 1979 29 69

[37] Vogan, David A., Jr. Unitarizability of certain series of representations Ann. of Math. (2) 1984 141 187

[38] Waldspurger, J.-L. Le groupe 𝐺𝐿_{𝑁} tordu, sur un corps 𝑝-adique. I Duke Math. J. 2007 185 234

[39] Waldspurger, J.-L. Le groupe 𝐺𝐿_{𝑁} tordu, sur un corps 𝑝-adique. II Duke Math. J. 2007 235 336

Cité par Sources :