Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_08_00616_4,
author = {Lee, Y.-P.},
title = {Invariance of tautological equations {II:} {Gromov-Witten} theory},
journal = {Journal of the American Mathematical Society},
pages = {331--352},
publisher = {mathdoc},
volume = {22},
number = {2},
year = {2009},
doi = {10.1090/S0894-0347-08-00616-4},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00616-4/}
}
TY - JOUR AU - Lee, Y.-P. TI - Invariance of tautological equations II: Gromov-Witten theory JO - Journal of the American Mathematical Society PY - 2009 SP - 331 EP - 352 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00616-4/ DO - 10.1090/S0894-0347-08-00616-4 ID - 10_1090_S0894_0347_08_00616_4 ER -
%0 Journal Article %A Lee, Y.-P. %T Invariance of tautological equations II: Gromov-Witten theory %J Journal of the American Mathematical Society %D 2009 %P 331-352 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00616-4/ %R 10.1090/S0894-0347-08-00616-4 %F 10_1090_S0894_0347_08_00616_4
Lee, Y.-P. Invariance of tautological equations II: Gromov-Witten theory. Journal of the American Mathematical Society, Tome 22 (2009) no. 2, pp. 331-352. doi: 10.1090/S0894-0347-08-00616-4
[1] , Tautological equations in genus 2 via invariance constraints Bull. Inst. Math. Acad. Sin. (N.S.) 2007 1 27
[2] , Quantum Riemann-Roch, Lefschetz and Serre Ann. of Math. (2) 2007 15 53
[3] , Mean field theory, topological field theory, and multi-matrix models Nuclear Phys. B 1990 486 522
[4] , Hodge integrals and Gromov-Witten theory Invent. Math. 2000 173 199
[5] , Relative maps and tautological classes J. Eur. Math. Soc. (JEMS) 2005 13 49
[6] Topological recursion relations in genus 2 1998 73 106
[7] The jet-space of a Frobenius manifold and higher-genus Gromov-Witten invariants 2004 45 89
[8] Gromov-Witten invariants and quantization of quadratic Hamiltonians Mosc. Math. J. 2001
[9] Symplectic geometry of Frobenius structures 2004 91 112
[10] , Gromov-Witten classes, quantum cohomology, and enumerative geometry Comm. Math. Phys. 1994 525 562
[11] , Relations between the correlators of the topological sigma-model coupled to gravity Comm. Math. Phys. 1998 385 398
[12] Invariance of tautological equations. I. Conjectures and applications J. Eur. Math. Soc. (JEMS) 2008 399 413
[13] Wittenâs conjecture and the Virasoro conjecture for genus up to two 2006 31 42
Cité par Sources :