Word maps and Waring type problems
Journal of the American Mathematical Society, Tome 22 (2009) no. 2, pp. 437-466

Voir la notice de l'article provenant de la source American Mathematical Society

Waring’s classical problem deals with expressing every natural number as a sum of $g(k)$ $k$th powers. Recently there has been considerable interest in similar questions for nonabelian groups and simple groups in particular. Here the $k$th power word is replaced by an arbitrary group word $w \ne 1$, and the goal is to express group elements as short products of values of $w$. We give a best possible and somewhat surprising solution for this Waring type problem for various finite simple groups, showing that a product of length two suffices to express all elements. We also show that the set of values of $w$ is very large, improving various results obtained so far. Along the way we also obtain new results of independent interest on character values and class squares in symmetric groups. Our methods involve algebraic geometry, representation theory, probabilistic arguments, as well as results from analytic number theory, including three primes theorems (approximating Goldbach’s Conjecture).
DOI : 10.1090/S0894-0347-08-00615-2

Larsen, Michael 1 ; Shalev, Aner 2

1 Department of Mathematics, Indiana University, Bloomington, Indiana 47405
2 Einstein Institute of Mathematics, Hebrew University, Givat Ram, Jerusalem 91904, Israel
@article{10_1090_S0894_0347_08_00615_2,
     author = {Larsen, Michael and Shalev, Aner},
     title = {Word maps and {Waring} type problems},
     journal = {Journal of the American Mathematical Society},
     pages = {437--466},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2009},
     doi = {10.1090/S0894-0347-08-00615-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00615-2/}
}
TY  - JOUR
AU  - Larsen, Michael
AU  - Shalev, Aner
TI  - Word maps and Waring type problems
JO  - Journal of the American Mathematical Society
PY  - 2009
SP  - 437
EP  - 466
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00615-2/
DO  - 10.1090/S0894-0347-08-00615-2
ID  - 10_1090_S0894_0347_08_00615_2
ER  - 
%0 Journal Article
%A Larsen, Michael
%A Shalev, Aner
%T Word maps and Waring type problems
%J Journal of the American Mathematical Society
%D 2009
%P 437-466
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00615-2/
%R 10.1090/S0894-0347-08-00615-2
%F 10_1090_S0894_0347_08_00615_2
Larsen, Michael; Shalev, Aner. Word maps and Waring type problems. Journal of the American Mathematical Society, Tome 22 (2009) no. 2, pp. 437-466. doi: 10.1090/S0894-0347-08-00615-2

[1] Théorie des topos et cohomologie étale des schémas. Tome 3 1973

[2] Products of conjugacy classes in groups 1985

[3] Ayoub, Raymond On Rademacher’s extension of the Goldbach-Vinogradoff theorem Trans. Amer. Math. Soc. 1953 482 491

[4] Baker, R. C., Harman, G., Pintz, J. The exceptional set for Goldbach’s problem in short intervals 1997 1 54

[5] Bertram, Edward Even permutations as a product of two conjugate cycles J. Combinatorial Theory Ser. A 1972 368 380

[6] Borel, A. On free subgroups of semisimple groups Enseign. Math. (2) 1983 151 164

[7] Brenner, J. L. Covering theorems for finite nonabelian simple groups. IX. How the square of a class with two nontrivial orbits in 𝑆_{𝑛} covers 𝐴_{𝑛} Ars Combin. 1977 151 176

[8] Deligne, Pierre La conjecture de Weil. II Inst. Hautes Études Sci. Publ. Math. 1980 137 252

[9] Ellers, Erich W., Gordeev, Nikolai, Herzog, Marcel Covering numbers for Chevalley groups Israel J. Math. 1999 339 372

[10] Erdå‘S, P., Turã¡N, P. On some problems of a statistical group-theory. I Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 1965

[11] Grothendieck, A. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I Inst. Hautes Études Sci. Publ. Math. 1964 259

[12] Grothendieck, A. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II Inst. Hautes Études Sci. Publ. Math. 1965 231

[13] Grothendieck, A. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III Inst. Hautes Études Sci. Publ. Math. 1966 255

[14] Grothendieck, A. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV Inst. Hautes Études Sci. Publ. Math. 1967 361

[15] Husemoller, Dale H. Ramified coverings of Riemann surfaces Duke Math. J. 1962 167 174

[16] James, G. D. The representation theory of the symmetric groups 1978

[17] Jones, Gareth A. Varieties and simple groups J. Austral. Math. Soc. 1974 163 173

[18] Lang, Serge Sur les séries 𝐿 d’une variété algébrique Bull. Soc. Math. France 1956 385 407

[19] Larsen, Michael Word maps have large image Israel J. Math. 2004 149 156

[20] Lawther, R., Liebeck, Martin W. On the diameter of a Cayley graph of a simple group of Lie type based on a conjugacy class J. Combin. Theory Ser. A 1998 118 137

[21] Liebeck, Martin W., Shalev, Aner Diameters of finite simple groups: sharp bounds and applications Ann. of Math. (2) 2001 383 406

[22] Liebeck, Martin W., Shalev, Aner Fuchsian groups, coverings of Riemann surfaces, subgroup growth, random quotients and random walks J. Algebra 2004 552 601

[23] Liebeck, Martin W., Shalev, Aner Fuchsian groups, finite simple groups and representation varieties Invent. Math. 2005 317 367

[24] Martinez, C., Zelmanov, E. Products of powers in finite simple groups Israel J. Math. 1996 469 479

[25] Matsumura, Hideyuki Commutative algebra 1970

[26] Mã¼Ller, Thomas W., Schlage-Puchta, Jan-Christoph Character theory of symmetric groups, subgroup growth of Fuchsian groups, and random walks Adv. Math. 2007 919 982

[27] Nathanson, Melvyn B. Additive number theory 1996

[28] Nikolov, Nikolay, Segal, Dan On finitely generated profinite groups. I. Strong completeness and uniform bounds Ann. of Math. (2) 2007 171 238

[29] Nikolov, Nikolay, Segal, Dan On finitely generated profinite groups. II. Products in quasisimple groups Ann. of Math. (2) 2007 239 273

[30] Pink, Richard Compact subgroups of linear algebraic groups J. Algebra 1998 438 504

[31] Saxl, Jan, Wilson, John S. A note on powers in simple groups Math. Proc. Cambridge Philos. Soc. 1997 91 94

[32] Tits, J. Classification of algebraic semisimple groups 1966 33 62

[33] Wilson, John First-order group theory 1996 301 314

Cité par Sources :