The structure of locally finite varieties with polynomially many models
Journal of the American Mathematical Society, Tome 22 (2009) no. 1, pp. 119-165

Voir la notice de l'article provenant de la source American Mathematical Society

We prove that a locally finite variety has at most polynomially many (in $k$) non-isomorphic $k$–generated algebras if and only if it decomposes into a varietal product of an affine variety over a ring of finite representation type, and a sequence of strongly Abelian varieties equivalent to matrix powers of varieties of $H$-sets, with constants, for various finite groups $H$.
DOI : 10.1090/S0894-0347-08-00614-0

Idziak, Paweł 1 ; McKenzie, Ralph 2 ; Valeriote, Matthew 3

1 Department of Theoretical Computer Science, Jagiellonian University, Kraków, Poland
2 Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37240
3 Department of Mathematics & Statistics, McMaster University, Hamilton, Ontario, Canada L8S 4K1
@article{10_1090_S0894_0347_08_00614_0,
     author = {Idziak, Pawe\r{A}‚ and McKenzie, Ralph and Valeriote, Matthew},
     title = {The structure of locally finite varieties with polynomially many models},
     journal = {Journal of the American Mathematical Society},
     pages = {119--165},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2009},
     doi = {10.1090/S0894-0347-08-00614-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00614-0/}
}
TY  - JOUR
AU  - Idziak, Paweł
AU  - McKenzie, Ralph
AU  - Valeriote, Matthew
TI  - The structure of locally finite varieties with polynomially many models
JO  - Journal of the American Mathematical Society
PY  - 2009
SP  - 119
EP  - 165
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00614-0/
DO  - 10.1090/S0894-0347-08-00614-0
ID  - 10_1090_S0894_0347_08_00614_0
ER  - 
%0 Journal Article
%A Idziak, Paweł
%A McKenzie, Ralph
%A Valeriote, Matthew
%T The structure of locally finite varieties with polynomially many models
%J Journal of the American Mathematical Society
%D 2009
%P 119-165
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00614-0/
%R 10.1090/S0894-0347-08-00614-0
%F 10_1090_S0894_0347_08_00614_0
Idziak, Paweł; McKenzie, Ralph; Valeriote, Matthew. The structure of locally finite varieties with polynomially many models. Journal of the American Mathematical Society, Tome 22 (2009) no. 1, pp. 119-165. doi: 10.1090/S0894-0347-08-00614-0

[1] Andrews, George E. The theory of partitions 1976

[2] Berman, Joel, Idziak, Paweå‚M. Generative complexity in algebra Mem. Amer. Math. Soc. 2005

[3] Berman, Joel, Mckenzie, Ralph Clones satisfying the term condition Discrete Math. 1984 7 29

[4] Bilski, Marcin Generative complexity in semigroup varieties J. Pure Appl. Algebra 2001 137 149

[5] Hobby, David, Mckenzie, Ralph The structure of finite algebras 1988

[6] Idziak, Paweå‚M., Mckenzie, Ralph Varieties with polynomially many models. I Fund. Math. 2001 53 68

[7] Kearnes, Keith A. Type preservation in locally finite varieties with the CEP Canad. J. Math. 1991 748 769

[8] Kearnes, Keith A. An order-theoretic property of the commutator Internat. J. Algebra Comput. 1993 491 533

[9] Kearnes, Keith A. Locally solvable factors of varieties Proc. Amer. Math. Soc. 1996 3619 3625

[10] Kearnes, K. A. A Hamiltonian property for nilpotent algebras Algebra Universalis 1997 403 421

[11] Kearnes, Keith A., Kiss, Emil W. Modularity prevents tails Proc. Amer. Math. Soc. 1999 11 19

[12] Kearnes, Keith A., Kiss, Emil W. Residual smallness and weak centrality Internat. J. Algebra Comput. 2003 35 59

[13] Kiss, Emil W., Valeriote, Matthew A. Abelian algebras and the Hamiltonian property J. Pure Appl. Algebra 1993 37 49

[14] Lovã¡Sz, L. Operations with structures Acta Math. Acad. Sci. Hungar. 1967 321 328

[15] Mckenzie, Ralph, Valeriote, Matthew The structure of decidable locally finite varieties 1989

Cité par Sources :