Voir la notice de l'article provenant de la source American Mathematical Society
Brendle, Simon 1 ; Schoen, Richard 1
@article{10_1090_S0894_0347_08_00613_9,
     author = {Brendle, Simon and Schoen, Richard},
     title = {Manifolds with 1/4-pinched curvature are space forms},
     journal = {Journal of the American Mathematical Society},
     pages = {287--307},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2009},
     doi = {10.1090/S0894-0347-08-00613-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00613-9/}
}
                      
                      
                    TY - JOUR AU - Brendle, Simon AU - Schoen, Richard TI - Manifolds with 1/4-pinched curvature are space forms JO - Journal of the American Mathematical Society PY - 2009 SP - 287 EP - 307 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00613-9/ DO - 10.1090/S0894-0347-08-00613-9 ID - 10_1090_S0894_0347_08_00613_9 ER -
%0 Journal Article %A Brendle, Simon %A Schoen, Richard %T Manifolds with 1/4-pinched curvature are space forms %J Journal of the American Mathematical Society %D 2009 %P 287-307 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00613-9/ %R 10.1090/S0894-0347-08-00613-9 %F 10_1090_S0894_0347_08_00613_9
Brendle, Simon; Schoen, Richard. Manifolds with 1/4-pinched curvature are space forms. Journal of the American Mathematical Society, Tome 22 (2009) no. 1, pp. 287-307. doi: 10.1090/S0894-0347-08-00613-9
[1] Les variétés Riemanniennes (1/4)-pincées Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 1960 161 170
[2] , Classification of manifolds with weakly 1/4-pinched curvatures Acta Math. 2008 1 13
[3] , Ricci flow with surgery on four-manifolds with positive isotropic curvature J. Differential Geom. 2006 177 264
[4] Pointwise \frac14-pinched 4-manifolds Ann. Global Anal. Geom. 1991 161 176
[5] Fundamental groups of manifolds with positive isotropic curvature Ann. of Math. (2) 2003 345 354
[6] Differenzierbare Strukturen und Metriken positiver Krümmung auf Sphären Math. Ann. 1966 353 371
[7] , , Group actions and curvature Invent. Math. 1974 31 48
[8] , , Jacobi fields and Finsler metrics on compact Lie groups with an application to differentiable pinching problems Math. Ann. 1974 7 21
[9] Three-manifolds with positive Ricci curvature J. Differential Geometry 1982 255 306
[10] Four-manifolds with positive curvature operator J. Differential Geom. 1986 153 179
[11] The formation of singularities in the Ricci flow 1995 7 136
[12] Four-manifolds with positive isotropic curvature Comm. Anal. Geom. 1997 1 92
[13] Ricci deformation of the metric on a Riemannian manifold J. Differential Geom. 1985 47 62
[14] , An equivariant pinching theorem Comment. Math. Helv. 1975 389 401
[15] A short proof of Bergerâs curvature tensor estimates Proc. Amer. Math. Soc. 1970 642 644
[16] Ãber Riemannsche Mannigfaltigkeiten mit positiver Krümmung Comment. Math. Helv. 1961 47 54
[17] Pointwise pinched manifolds are space forms 1986 307 328
[18] , Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes Ann. of Math. (2) 1988 199 227
[19] , Metrics with nonnegative isotropic curvature Duke Math. J. 1993 649 672
[20] Deformation of Riemannian metrics and manifolds with bounded curvature ratios 1986 343 352
[21] A contribution to differential geometry in the large Ann. of Math. (2) 1951 38 55
[22] Krümmung und differenzierbare Struktur auf Sphären. II Math. Ann. 1973 113 129
[23] Riemannian manifolds with bounded curvature ratios J. Differential Geometry 1982
[24] , On the differentiable pinching problem Math. Ann. 1971 1 16
Cité par Sources :