Constructible sheaves and the Fukaya category
Journal of the American Mathematical Society, Tome 22 (2009) no. 1, pp. 233-286

Voir la notice de l'article provenant de la source American Mathematical Society

Let $X$ be a compact real analytic manifold, and let $T^*X$ be its cotangent bundle. Let $Sh(X)$ be the triangulated dg category of bounded, constructible complexes of sheaves on $X$. In this paper, we develop a Fukaya $A_\infty$-category $Fuk(T^*X)$ whose objects are exact, not necessarily compact Lagrangian branes in the cotangent bundle. We write $Tw Fuk(T^*X)$ for the $A_\infty$-triangulated envelope of $Fuk(T^*X)$ consisting of twisted complexes of Lagrangian branes. Our main result is that $Sh(X)$ quasi-embeds into $Tw Fuk(T^*X)$ as an $A_\infty$-category. Taking cohomology gives an embedding of the corresponding derived categories.
DOI : 10.1090/S0894-0347-08-00612-7

Nadler, David 1 ; Zaslow, Eric 1

1 Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, Illinois 60208
@article{10_1090_S0894_0347_08_00612_7,
     author = {Nadler, David and Zaslow, Eric},
     title = {Constructible sheaves and the {Fukaya} category},
     journal = {Journal of the American Mathematical Society},
     pages = {233--286},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2009},
     doi = {10.1090/S0894-0347-08-00612-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00612-7/}
}
TY  - JOUR
AU  - Nadler, David
AU  - Zaslow, Eric
TI  - Constructible sheaves and the Fukaya category
JO  - Journal of the American Mathematical Society
PY  - 2009
SP  - 233
EP  - 286
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00612-7/
DO  - 10.1090/S0894-0347-08-00612-7
ID  - 10_1090_S0894_0347_08_00612_7
ER  - 
%0 Journal Article
%A Nadler, David
%A Zaslow, Eric
%T Constructible sheaves and the Fukaya category
%J Journal of the American Mathematical Society
%D 2009
%P 233-286
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00612-7/
%R 10.1090/S0894-0347-08-00612-7
%F 10_1090_S0894_0347_08_00612_7
Nadler, David; Zaslow, Eric. Constructible sheaves and the Fukaya category. Journal of the American Mathematical Society, Tome 22 (2009) no. 1, pp. 233-286. doi: 10.1090/S0894-0347-08-00612-7

[1] Audin, Michã¨Le, Lalonde, Franã§Ois, Polterovich, Leonid Symplectic rigidity: Lagrangian submanifolds 1994 271 321

[2] Bierstone, Edward, Milman, Pierre D. Semianalytic and subanalytic sets Inst. Hautes Études Sci. Publ. Math. 1988 5 42

[3] Drinfeld, Vladimir DG quotients of DG categories J. Algebra 2004 643 691

[4] Dubson, Alberto S. Formule pour l’indice des complexes constructibles et des Modules holonomes C. R. Acad. Sci. Paris Sér. I Math. 1984 113 116

[5] Eliashberg, Y., Givental, A., Hofer, H. Introduction to symplectic field theory Geom. Funct. Anal. 2000 560 673

[6] Fukaya, Kenji Morse homotopy and its quantization 1997 409 440

[7] Fukaya, Kenji, Oh, Yong-Geun Zero-loop open strings in the cotangent bundle and Morse homotopy Asian J. Math. 1997 96 180

[8] Ginsburg, V. Characteristic varieties and vanishing cycles Invent. Math. 1986 327 402

[9] Goresky, Mark, Macpherson, Robert Stratified Morse theory 1988

[10] Grinberg, Mikhail, Macpherson, Robert Euler characteristics and Lagrangian intersections 1999 265 293

[11] Gross, Mark, Siebert, Bernd Affine manifolds, log structures, and mirror symmetry Turkish J. Math. 2003 33 60

[12] Harvey, F. Reese, Lawson, H. Blaine, Jr. Finite volume flows and Morse theory Ann. of Math. (2) 2001 1 25

[13] Kapustin, Anton, Witten, Edward Electric-magnetic duality and the geometric Langlands program Commun. Number Theory Phys. 2007 1 236

[14] Kashiwara, Masaki Index theorem for constructible sheaves Astérisque 1985 193 209

[15] Kashiwara, Masaki Quantization of contact manifolds Publ. Res. Inst. Math. Sci. 1996 1 7

[16] Kashiwara, Masaki, Schapira, Pierre Microlocal study of sheaves Astérisque 1985 235

[17] Kashiwara, Masaki, Schapira, Pierre Sheaves on manifolds 1994

[18] Kasturirangan, Rajesh, Oh, Yong-Geun Floer homology of open subsets and a relative version of Arnold’s conjecture Math. Z. 2001 151 189

[19] Keller, Bernhard On the cyclic homology of exact categories J. Pure Appl. Algebra 1999 1 56

[20] Kontsevich, Maxim Deformation quantization of algebraic varieties Lett. Math. Phys. 2001 271 294

[21] Kontsevich, Maxim, Soibelman, Yan Affine structures and non-Archimedean analytic spaces 2006 321 385

[22] Piunikhin, S., Salamon, D., Schwarz, M. Symplectic Floer-Donaldson theory and quantum cohomology 1996 171 200

[23] Polesello, Pietro, Schapira, Pierre Stacks of quantization-deformation modules on complex symplectic manifolds Int. Math. Res. Not. 2004 2637 2664

[24] Schmid, Wilfried, Vilonen, Kari Characteristic cycles of constructible sheaves Invent. Math. 1996 451 502

[25] Seidel, Paul, Thomas, Richard Braid group actions on derived categories of coherent sheaves Duke Math. J. 2001 37 108

[26] Sikorav, Jean-Claude Some properties of holomorphic curves in almost complex manifolds 1994 165 189

[27] Van Den Dries, Lou, Miller, Chris Geometric categories and o-minimal structures Duke Math. J. 1996 497 540

Cité par Sources :