Exponential Thurston maps and limits of quadratic differentials
Journal of the American Mathematical Society, Tome 22 (2009) no. 1, pp. 77-117

Voir la notice de l'article provenant de la source American Mathematical Society

We give a topological characterization of postsingularly finite topological exponential maps, i.e., universal covers $g\colon \mathbb {C}\to \mathbb {C}\setminus \{0\}$ such that $0$ has a finite orbit. Such a map either is Thurston equivalent to a unique holomorphic exponential map $\lambda e^z$ or it has a topological obstruction called a degenerate Levy cycle. This is the first analog of Thurston’s topological characterization theorem of rational maps, as published by Douady and Hubbard, for the case of infinite degree. One main tool is a theorem about the distribution of mass of an integrable quadratic differential with a given number of poles, providing an almost compact space of models for the entire mass of quadratic differentials. This theorem is given for arbitrary Riemann surfaces of finite type in a uniform way.
DOI : 10.1090/S0894-0347-08-00609-7

Hubbard, John 1 ; Schleicher, Dierk 2 ; Shishikura, Mitsuhiro 3

1 Department of Mathematics, Malott Hall, Cornell University, Ithaca, New York 14853, and Centre de Mathématiques et d’Informatique, Université de Provence, 39 rue Frédéric Joliot-Curie, 13453 Marseille Cedex 13, France
2 School of Engineering and Science, Jacobs University Bremen, Postfach 750 561, D-28725 Bremen, Germany
3 Department of Mathematics, Faculty of Sciences, Kyoto University, Kyoto 606-8502, Japan
@article{10_1090_S0894_0347_08_00609_7,
     author = {Hubbard, John and Schleicher, Dierk and Shishikura, Mitsuhiro},
     title = {Exponential {Thurston} maps and limits of quadratic differentials},
     journal = {Journal of the American Mathematical Society},
     pages = {77--117},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2009},
     doi = {10.1090/S0894-0347-08-00609-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00609-7/}
}
TY  - JOUR
AU  - Hubbard, John
AU  - Schleicher, Dierk
AU  - Shishikura, Mitsuhiro
TI  - Exponential Thurston maps and limits of quadratic differentials
JO  - Journal of the American Mathematical Society
PY  - 2009
SP  - 77
EP  - 117
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00609-7/
DO  - 10.1090/S0894-0347-08-00609-7
ID  - 10_1090_S0894_0347_08_00609_7
ER  - 
%0 Journal Article
%A Hubbard, John
%A Schleicher, Dierk
%A Shishikura, Mitsuhiro
%T Exponential Thurston maps and limits of quadratic differentials
%J Journal of the American Mathematical Society
%D 2009
%P 77-117
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00609-7/
%R 10.1090/S0894-0347-08-00609-7
%F 10_1090_S0894_0347_08_00609_7
Hubbard, John; Schleicher, Dierk; Shishikura, Mitsuhiro. Exponential Thurston maps and limits of quadratic differentials. Journal of the American Mathematical Society, Tome 22 (2009) no. 1, pp. 77-117. doi: 10.1090/S0894-0347-08-00609-7

[1] Ahlfors, Lars V. Conformal invariants: topics in geometric function theory 1973

[2] Ahlfors, Lars V. Lectures on quasiconformal mappings 1966

[3] Bodelã³N, Clara, Devaney, Robert L., Hayes, Michael, Roberts, Gareth, Goldberg, Lisa R., Hubbard, John H. Hairs for the complex exponential family Internat. J. Bifur. Chaos Appl. Sci. Engrg. 1999 1517 1534

[4] Bielefeld, Ben, Fisher, Yuval, Hubbard, John The classification of critically preperiodic polynomials as dynamical systems J. Amer. Math. Soc. 1992 721 762

[5] Baker, I. N., Rippon, P. J. Iteration of exponential functions Ann. Acad. Sci. Fenn. Ser. A I Math. 1984 49 77

[6] Douady, Adrien, Hubbard, John H. A proof of Thurston’s topological characterization of rational functions Acta Math. 1993 263 297

[7] Erã«Menko, A. È., Lyubich, M. Yu. Dynamical properties of some classes of entire functions Ann. Inst. Fourier (Grenoble) 1992 989 1020

[8] Fã¶Rster, Markus, Rempe, Lasse, Schleicher, Dierk Classification of escaping exponential maps Proc. Amer. Math. Soc. 2008 651 663

[9] Gardiner, Frederick P., Lakic, Nikola Quasiconformal Teichmüller theory 2000

[10] Hubbard, John Hamal Teichmüller theory and applications to geometry, topology, and dynamics. Vol. 1 2006

[11] Hubbard, John H., Schleicher, Dierk The spider algorithm 1994 155 180

[12] Imayoshi, Y., Taniguchi, M. An introduction to Teichmüller spaces 1992

[13] Kiwi, Jan Rational laminations of complex polynomials 2001 111 154

[14] Lehto, Olli Univalent functions and Teichmüller spaces 1987

[15] Mcmullen, Curt Amenability, Poincaré series and quasiconformal maps Invent. Math. 1989 95 127

[16] Mcmullen, Curtis T. Complex dynamics and renormalization 1994

[17] Mcmullen, Curtis T. The moduli space of Riemann surfaces is Kähler hyperbolic Ann. of Math. (2) 2000 327 357

[18] Schleicher, Dierk Attracting dynamics of exponential maps Ann. Acad. Sci. Fenn. Math. 2003 3 34

[19] Schleicher, Dierk The dynamical fine structure of iterated cosine maps and a dimension paradox Duke Math. J. 2007 343 356

[20] Schleicher, Dierk Hyperbolic components in exponential parameter space C. R. Math. Acad. Sci. Paris 2004 223 228

[21] Schleicher, Dierk, Zimmer, Johannes Escaping points of exponential maps J. London Math. Soc. (2) 2003 380 400

[22] Schleicher, Dierk, Zimmer, Johannes Periodic points and dynamic rays of exponential maps Ann. Acad. Sci. Fenn. Math. 2003 327 354

Cité par Sources :