Localization for quantum groups at a root of unity
Journal of the American Mathematical Society, Tome 21 (2008) no. 4, pp. 1001-1018

Voir la notice de l'article provenant de la source American Mathematical Society

In the paper Quantum flag varieties, equivariant quantum $\mathcal {D}$-modules, and localization of Quantum groups, Backelin and Kremnizer defined categories of equivariant quantum $\mathcal {O}_q$-modules and $\mathcal {D}_q$-modules on the quantum flag variety of $G$. We proved that the Beilinson-Bernstein localization theorem holds at a generic $q$. Here we prove that a derived version of this theorem holds at the root of unity case. Namely, the global section functor gives a derived equivalence between categories of $U_q$-modules and $\mathcal {D}_q$-modules on the quantum flag variety. For this we first prove that $\mathcal {D}_q$ is an Azumaya algebra over a dense subset of the cotangent bundle $T^\star X$ of the classical (char $0$) flag variety $X$. This way we get a derived equivalence between representations of $U_q$ and certain $\mathcal {O}_{T^\star X}$-modules. In the paper Localization for a semi-simple Lie algebra in prime characteristic, by Bezrukavnikov, Mirkovic, and Rumynin, similar results were obtained for a Lie algebra $\mathfrak {g}_p$ in char $p$. Hence, representations of $\mathfrak {g}_p$ and of $U_q$ (when $q$ is a $p$’th root of unity) are related via the cotangent bundles $T^\star X$ in char $0$ and in char $p$, respectively.
DOI : 10.1090/S0894-0347-08-00608-5

Backelin, Erik 1 ; Kremnizer, Kobi 2

1 Departamento de Matemáticas, Universidad de Los Andes, Carrera 4, 26-51, Bogota, Colombia
2 Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307
@article{10_1090_S0894_0347_08_00608_5,
     author = {Backelin, Erik and Kremnizer, Kobi},
     title = {Localization for quantum groups at a root of unity},
     journal = {Journal of the American Mathematical Society},
     pages = {1001--1018},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2008},
     doi = {10.1090/S0894-0347-08-00608-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00608-5/}
}
TY  - JOUR
AU  - Backelin, Erik
AU  - Kremnizer, Kobi
TI  - Localization for quantum groups at a root of unity
JO  - Journal of the American Mathematical Society
PY  - 2008
SP  - 1001
EP  - 1018
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00608-5/
DO  - 10.1090/S0894-0347-08-00608-5
ID  - 10_1090_S0894_0347_08_00608_5
ER  - 
%0 Journal Article
%A Backelin, Erik
%A Kremnizer, Kobi
%T Localization for quantum groups at a root of unity
%J Journal of the American Mathematical Society
%D 2008
%P 1001-1018
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00608-5/
%R 10.1090/S0894-0347-08-00608-5
%F 10_1090_S0894_0347_08_00608_5
Backelin, Erik; Kremnizer, Kobi. Localization for quantum groups at a root of unity. Journal of the American Mathematical Society, Tome 21 (2008) no. 4, pp. 1001-1018. doi: 10.1090/S0894-0347-08-00608-5

[1] Arkhipov, Sergey, Bezrukavnikov, Roman, Ginzburg, Victor Quantum groups, the loop Grassmannian, and the Springer resolution J. Amer. Math. Soc. 2004 595 678

[2] Arkhipov, Sergey, Gaitsgory, Dennis Another realization of the category of modules over the small quantum group Adv. Math. 2003 114 143

[3] Andersen, Henning Haahr, Jantzen, Jens Carsten Cohomology of induced representations for algebraic groups Math. Ann. 1984 487 525

[4] Andersen, H. H., Jantzen, J. C., Soergel, W. Representations of quantum groups at a 𝑝th root of unity and of semisimple groups in characteristic 𝑝: independence of 𝑝 Astérisque 1994 321

[5] Andersen, Henning Haahr, Polo, Patrick, Wen, Ke Xin Representations of quantum algebras Invent. Math. 1991 1 59

[6] Backelin, Erik, Kremnizer, Kobi Quantum flag varieties, equivariant quantum 𝒟-modules, and localization of quantum groups Adv. Math. 2006 408 429

[7] Beä­Linson, Alexandre, Bernstein, Joseph Localisation de 𝑔-modules C. R. Acad. Sci. Paris Sér. I Math. 1981 15 18

[8] Brown, Kenneth A., Gordon, Iain The ramification of centres: Lie algebras in positive characteristic and quantised enveloping algebras Math. Z. 2001 733 779

[9] Chari, Vyjayanthi, Pressley, Andrew A guide to quantum groups 1995

[10] De Concini, C., Kac, V. G., Procesi, C. Quantum coadjoint action J. Amer. Math. Soc. 1992 151 189

[11] De Concini, Corrado, Lyubashenko, Volodimir Quantum function algebra at roots of 1 Adv. Math. 1994 205 262

[12] Joseph, Anthony Faithfully flat embeddings for minimal primitive quotients of quantized enveloping algebras 1993 79 106

[13] Joseph, Anthony, Letzter, Gail Local finiteness of the adjoint action for quantized enveloping algebras J. Algebra 1992 289 318

[14] Kaneda, Masaharu Cohomology of infinitesimal quantum algebras J. Algebra 2000 250 282

[15] Woodcock, D. Schur algebras and global bases: new proofs of old vanishing theorems J. Algebra 1997 331 370

Cité par Sources :