On the size of Kakeya sets in finite fields
Journal of the American Mathematical Society, Tome 22 (2009) no. 4, pp. 1093-1097

Voir la notice de l'article provenant de la source American Mathematical Society

A Kakeya set is a subset of $\mathbb {F}^n$, where $\mathbb {F}$ is a finite field of $q$ elements, that contains a line in every direction. In this paper we show that the size of every Kakeya set is at least $C_{n} \cdot q^{n}$, where $C_{n}$ depends only on $n$. This answers a question of Wolff.
DOI : 10.1090/S0894-0347-08-00607-3

Dvir, Zeev 1

1 Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel
@article{10_1090_S0894_0347_08_00607_3,
     author = {Dvir, Zeev},
     title = {On the size of {Kakeya} sets in finite fields},
     journal = {Journal of the American Mathematical Society},
     pages = {1093--1097},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2009},
     doi = {10.1090/S0894-0347-08-00607-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00607-3/}
}
TY  - JOUR
AU  - Dvir, Zeev
TI  - On the size of Kakeya sets in finite fields
JO  - Journal of the American Mathematical Society
PY  - 2009
SP  - 1093
EP  - 1097
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00607-3/
DO  - 10.1090/S0894-0347-08-00607-3
ID  - 10_1090_S0894_0347_08_00607_3
ER  - 
%0 Journal Article
%A Dvir, Zeev
%T On the size of Kakeya sets in finite fields
%J Journal of the American Mathematical Society
%D 2009
%P 1093-1097
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00607-3/
%R 10.1090/S0894-0347-08-00607-3
%F 10_1090_S0894_0347_08_00607_3
Dvir, Zeev. On the size of Kakeya sets in finite fields. Journal of the American Mathematical Society, Tome 22 (2009) no. 4, pp. 1093-1097. doi: 10.1090/S0894-0347-08-00607-3

[1] Bourgain, J., Katz, N., Tao, T. A sum-product estimate in finite fields, and applications Geom. Funct. Anal. 2004 27 57

[2] Bourgain, J. On the dimension of Kakeya sets and related maximal inequalities Geom. Funct. Anal. 1999 256 282

[3] Bourgain, J. Harmonic analysis and combinatorics: how much may they contribute to each other? 2000 13 32

[4] Davies, Roy O. Some remarks on the Kakeya problem Proc. Cambridge Philos. Soc. 1971 417 421

[5] Katz, Nets Hawk, Tao, Terence Bounds on arithmetic projections, and applications to the Kakeya conjecture Math. Res. Lett. 1999 625 630

[6] Mockenhaupt, Gerd, Tao, Terence Restriction and Kakeya phenomena for finite fields Duke Math. J. 2004 35 74

[7] Rogers, Keith Mckenzie The finite field Kakeya problem Amer. Math. Monthly 2001 756 759

[8] Schwartz, J. T. Fast probabilistic algorithms for verification of polynomial identities J. Assoc. Comput. Mach. 1980 701 717

[9] Tao, Terence From rotating needles to stability of waves: emerging connections between combinatorics, analysis, and PDE Notices Amer. Math. Soc. 2001 294 303

[10] Tao, Terence A new bound for finite field Besicovitch sets in four dimensions Pacific J. Math. 2005 337 363

[11] Wolff, Thomas Recent work connected with the Kakeya problem 1999 129 162

[12] Zippel, Richard Probabilistic algorithms for sparse polynomials 1979 216 226

Cité par Sources :