Cholak, Peter  1 ; Downey, Rodney  2 ; Harrington, Leo  3
@article{10_1090_S0894_0347_08_00604_8,
author = {Cholak, Peter and Downey, Rodney and Harrington, Leo},
title = {On the orbits of computably enumerable sets},
journal = {Journal of the American Mathematical Society},
pages = {1105--1135},
year = {2008},
volume = {21},
number = {4},
doi = {10.1090/S0894-0347-08-00604-8},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00604-8/}
}
TY - JOUR AU - Cholak, Peter AU - Downey, Rodney AU - Harrington, Leo TI - On the orbits of computably enumerable sets JO - Journal of the American Mathematical Society PY - 2008 SP - 1105 EP - 1135 VL - 21 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00604-8/ DO - 10.1090/S0894-0347-08-00604-8 ID - 10_1090_S0894_0347_08_00604_8 ER -
%0 Journal Article %A Cholak, Peter %A Downey, Rodney %A Harrington, Leo %T On the orbits of computably enumerable sets %J Journal of the American Mathematical Society %D 2008 %P 1105-1135 %V 21 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00604-8/ %R 10.1090/S0894-0347-08-00604-8 %F 10_1090_S0894_0347_08_00604_8
Cholak, Peter; Downey, Rodney; Harrington, Leo. On the orbits of computably enumerable sets. Journal of the American Mathematical Society, Tome 21 (2008) no. 4, pp. 1105-1135. doi: 10.1090/S0894-0347-08-00604-8
[1] , Computable structures and the hyperarithmetical hierarchy 2000
[2] , Extension theorems, orbits, and automorphisms of the computably enumerable sets Trans. Amer. Math. Soc. 2008 1759 1791
[3] , On the definability of the double jump in the computably enumerable sets J. Math. Log. 2002 261 296
[4] , Isomorphisms of splits of computably enumerable sets J. Symbolic Logic 2003 1044 1064
[5] , , Some orbits for ℰ Ann. Pure Appl. Logic 2001 193 226
[6] , Automorphisms of the lattice of recursively enumerable sets: orbits Adv. Math. 1992 237 265
[7] , , , Π¹₁ relations and paths through 𝒪 J. Symbolic Logic 2004 585 611
[8] , Codable sets and orbits of computably enumerable sets J. Symbolic Logic 1998 1 28
[9] , Post’s program and incomplete recursively enumerable sets Proc. Nat. Acad. Sci. U.S.A. 1991 10242 10246
[10] , The Δ⁰₃-automorphism method and noninvariant classes of degrees J. Amer. Math. Soc. 1996 617 666
[11] , Realizing levels of the hyperarithmetic hierarchy as degree spectra of relations on computable structures Notre Dame J. Formal Logic 2002
[12] On the lattice of recursively enumerable sets Trans. Amer. Math. Soc. 1968 1 37
[13] On the orbits of hyperhypersimple sets J. Symbolic Logic 1984 51 62
[14] Theory of recursive functions and effective computability 1967
[15] Higher recursion theory 1990
[16] Automorphisms of the lattice of recursively enumerable sets. I. Maximal sets Ann. of Math. (2) 1974 80 120
[17] Recursively enumerable sets and degrees 1987
Cité par Sources :