Study of a 𝐙-form of the coordinate ring of a reductive group
Journal of the American Mathematical Society, Tome 22 (2009) no. 3, pp. 739-769

Voir la notice de l'article provenant de la source American Mathematical Society

We show how the theory of canonical bases in modified universal enveloping algebras can be used to develop the theory of Chevalley groups over any commutative ring with $1$.
DOI : 10.1090/S0894-0347-08-00603-6

Lusztig, G. 1

1 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
@article{10_1090_S0894_0347_08_00603_6,
     author = {Lusztig, G.},
     title = {Study of a {\dh}™-form of the coordinate ring of a reductive group},
     journal = {Journal of the American Mathematical Society},
     pages = {739--769},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2009},
     doi = {10.1090/S0894-0347-08-00603-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00603-6/}
}
TY  - JOUR
AU  - Lusztig, G.
TI  - Study of a 𝐙-form of the coordinate ring of a reductive group
JO  - Journal of the American Mathematical Society
PY  - 2009
SP  - 739
EP  - 769
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00603-6/
DO  - 10.1090/S0894-0347-08-00603-6
ID  - 10_1090_S0894_0347_08_00603_6
ER  - 
%0 Journal Article
%A Lusztig, G.
%T Study of a 𝐙-form of the coordinate ring of a reductive group
%J Journal of the American Mathematical Society
%D 2009
%P 739-769
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00603-6/
%R 10.1090/S0894-0347-08-00603-6
%F 10_1090_S0894_0347_08_00603_6
Lusztig, G. Study of a 𝐙-form of the coordinate ring of a reductive group. Journal of the American Mathematical Society, Tome 22 (2009) no. 3, pp. 739-769. doi: 10.1090/S0894-0347-08-00603-6

[1] Borel, Armand Linear algebraic groups 1969

[2] Borel, Armand Properties and linear representations of Chevalley groups 1970 1 55

[3] Chevalley, C. Sur certains groupes simples Tohoku Math. J. (2) 1955 14 66

[4] Chevalley, Claude Certains schémas de groupes semi-simples 1995

[5] Joseph, Anthony Quantum groups and their primitive ideals 1995

[6] Kostant, Bertram Groups over 𝑍 1966 90 98

[7] Lusztig, George Introduction to quantum groups 1993

[8] Lusztig, George Quantum groups at 𝑣 1995 199 221

[9] Soä­Bel′Man, Ya. S. Algebra of functions on a compact quantum group and its representations Algebra i Analiz 1990 190 212

[10] Steinberg, Robert Lectures on Chevalley groups 1968

Cité par Sources :