Study of a ð-form of the coordinate ring of a reductive group
Journal of the American Mathematical Society, Tome 22 (2009) no. 3, pp. 739-769
Voir la notice de l'article provenant de la source American Mathematical Society
We show how the theory of canonical bases in modified universal enveloping algebras can be used to develop the theory of Chevalley groups over any commutative ring with $1$.
@article{10_1090_S0894_0347_08_00603_6,
author = {Lusztig, G.},
title = {Study of a {\dh}-form of the coordinate ring of a reductive group},
journal = {Journal of the American Mathematical Society},
pages = {739--769},
publisher = {mathdoc},
volume = {22},
number = {3},
year = {2009},
doi = {10.1090/S0894-0347-08-00603-6},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00603-6/}
}
TY - JOUR AU - Lusztig, G. TI - Study of a ð-form of the coordinate ring of a reductive group JO - Journal of the American Mathematical Society PY - 2009 SP - 739 EP - 769 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00603-6/ DO - 10.1090/S0894-0347-08-00603-6 ID - 10_1090_S0894_0347_08_00603_6 ER -
%0 Journal Article %A Lusztig, G. %T Study of a ð-form of the coordinate ring of a reductive group %J Journal of the American Mathematical Society %D 2009 %P 739-769 %V 22 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00603-6/ %R 10.1090/S0894-0347-08-00603-6 %F 10_1090_S0894_0347_08_00603_6
Lusztig, G. Study of a ð-form of the coordinate ring of a reductive group. Journal of the American Mathematical Society, Tome 22 (2009) no. 3, pp. 739-769. doi: 10.1090/S0894-0347-08-00603-6
[1] Linear algebraic groups 1969
[2] Properties and linear representations of Chevalley groups 1970 1 55
[3] Sur certains groupes simples Tohoku Math. J. (2) 1955 14 66
[4] Certains schémas de groupes semi-simples 1995
[5] Quantum groups and their primitive ideals 1995
[6] Groups over ð 1966 90 98
[7] Introduction to quantum groups 1993
[8] Quantum groups at ð£ 1995 199 221
[9] Algebra of functions on a compact quantum group and its representations Algebra i Analiz 1990 190 212
[10] Lectures on Chevalley groups 1968
Cité par Sources :