On intervals in subgroup lattices of finite groups
Journal of the American Mathematical Society, Tome 21 (2008) no. 3, pp. 809-830

Voir la notice de l'article provenant de la source American Mathematical Society

We investigate the question of which finite lattices $L$ are isomorphic to the lattice $[H,G]$ of all overgroups of a subgroup $H$ in a finite group $G$. We show that the structure of $G$ is highly restricted if $[H,G]$ is disconnected. We define the notion of a “signalizer lattice" in $H$ and show for suitable disconnected lattices $L$, if $[H,G]$ is minimal subject to being isomorphic to $L$ or its dual, then either $G$ is almost simple or $H$ admits a signalizer lattice isomorphic to $L$ or its dual. We use this theory to answer a question in functional analysis raised by Watatani.
DOI : 10.1090/S0894-0347-08-00602-4

Aschbacher, Michael 1

1 Department of Mathematics, California Institute of Technology, Pasadena, California 91125
@article{10_1090_S0894_0347_08_00602_4,
     author = {Aschbacher, Michael},
     title = {On intervals in subgroup lattices of finite groups},
     journal = {Journal of the American Mathematical Society},
     pages = {809--830},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2008},
     doi = {10.1090/S0894-0347-08-00602-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00602-4/}
}
TY  - JOUR
AU  - Aschbacher, Michael
TI  - On intervals in subgroup lattices of finite groups
JO  - Journal of the American Mathematical Society
PY  - 2008
SP  - 809
EP  - 830
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00602-4/
DO  - 10.1090/S0894-0347-08-00602-4
ID  - 10_1090_S0894_0347_08_00602_4
ER  - 
%0 Journal Article
%A Aschbacher, Michael
%T On intervals in subgroup lattices of finite groups
%J Journal of the American Mathematical Society
%D 2008
%P 809-830
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00602-4/
%R 10.1090/S0894-0347-08-00602-4
%F 10_1090_S0894_0347_08_00602_4
Aschbacher, Michael. On intervals in subgroup lattices of finite groups. Journal of the American Mathematical Society, Tome 21 (2008) no. 3, pp. 809-830. doi: 10.1090/S0894-0347-08-00602-4

[1] Aschbacher, M., Scott, L. Maximal subgroups of finite groups J. Algebra 1985 44 80

[2] Baddeley, Robert, Lucchini, Andrea On representing finite lattices as intervals in subgroup lattices of finite groups J. Algebra 1997 1 100

[3] Aschbacher, Michael Finite group theory 1986

[4] Grossman, Pinhas, Jones, Vaughan F. R. Intermediate subfactors with no extra structure J. Amer. Math. Soc. 2007 219 265

[5] Glauberman, George Central elements in core-free groups J. Algebra 1966 403 420

[6] Gorenstein, Daniel, Lyons, Richard, Solomon, Ronald The classification of the finite simple groups 1994

[7] Murray, F. J., Von Neumann, J. On rings of operators Ann. of Math. (2) 1936 116 229

[8] Pã¡Lfy, Pã©Ter Pã¡L, Pudlã¡K, Pavel Congruence lattices of finite algebras and intervals in subgroup lattices of finite groups Algebra Universalis 1980 22 27

[9] Takesaki, Masamichi Theory of operator algebras. I 1979

[10] Watatani, Yasuo Lattices of intermediate subfactors J. Funct. Anal. 1996 312 334

Cité par Sources :