Voir la notice de l'article provenant de la source American Mathematical Society
Kenig, C. 1 ; Preiss, D. 2 ; Toro, T. 3
@article{10_1090_S0894_0347_08_00601_2,
     author = {Kenig, C. and Preiss, D. and Toro, T.},
     title = {Boundary structure and size in terms of interior and exterior harmonic measures in higher dimensions},
     journal = {Journal of the American Mathematical Society},
     pages = {771--796},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2009},
     doi = {10.1090/S0894-0347-08-00601-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00601-2/}
}
                      
                      
                    TY - JOUR AU - Kenig, C. AU - Preiss, D. AU - Toro, T. TI - Boundary structure and size in terms of interior and exterior harmonic measures in higher dimensions JO - Journal of the American Mathematical Society PY - 2009 SP - 771 EP - 796 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00601-2/ DO - 10.1090/S0894-0347-08-00601-2 ID - 10_1090_S0894_0347_08_00601_2 ER -
%0 Journal Article %A Kenig, C. %A Preiss, D. %A Toro, T. %T Boundary structure and size in terms of interior and exterior harmonic measures in higher dimensions %J Journal of the American Mathematical Society %D 2009 %P 771-796 %V 22 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00601-2/ %R 10.1090/S0894-0347-08-00601-2 %F 10_1090_S0894_0347_08_00601_2
Kenig, C.; Preiss, D.; Toro, T. Boundary structure and size in terms of interior and exterior harmonic measures in higher dimensions. Journal of the American Mathematical Society, Tome 22 (2009) no. 3, pp. 771-796. doi: 10.1090/S0894-0347-08-00601-2
[1] , , Variational problems with two phases and their free boundaries Trans. Amer. Math. Soc. 1984 431 461
[2] Some questions concerning harmonic measure 1992 89 97
[3] , , , Harmonic measures supported on curves Pacific J. Math. 1989 233 236
[4] , Minimal rearrangements of Sobolev functions J. Reine Angew. Math. 1988 153 179
[5] On the support of harmonic measure for sets of Cantor type Ann. Acad. Sci. Fenn. Ser. A I Math. 1985 113 123
[6] , Measure theory and fine properties of functions 1992
[7] Techniques in fractal geometry 1997
[8] , Harmonic measure 2005
[9] , Nodal sets for solutions of elliptic equations J. Differential Geom. 1989 505 522
[10] A geometric localization theorem Adv. in Math. 1982 71 79
[11] , Hausdorff dimension of harmonic measures in the plane Acta Math. 1988 131 144
[12] , Harmonic measure on locally flat domains Duke Math. J. 1997 509 551
[13] , Free boundary regularity below the continuous threshold: 2-phase problems J. Reine Angew. Math. 2006 1 44
[14] , Free boundary regularity for harmonic measures and Poisson kernels Ann. of Math. (2) 1999 369 454
[15] , , Wolff snowflakes Pacific J. Math. 2005 139 166
[16] On the distortion of boundary sets under conformal mappings Proc. London Math. Soc. (3) 1985 369 384
[17] Geometry of sets and measures in Euclidean spaces 1995
[18] Geometry of measures in ð â¿: distribution, rectifiability, and densities Ann. of Math. (2) 1987 537 643
[19] Lectures on geometric measure theory 1983
[20] Counterexamples with harmonic gradients in ð ³ 1995 321 384
Cité par Sources :