On the Cachazo-Douglas-Seiberg-Witten conjecture for simple Lie algebras
Journal of the American Mathematical Society, Tome 21 (2008) no. 3, pp. 797-808

Voir la notice de l'article provenant de la source American Mathematical Society

We prove a part of the Cachazo-Douglas-Seiberg-Witten conjecture uniformly for any simple Lie algebra $\mathfrak {g}$. The main ingredients in the proof are: Garland’s result on the Lie algebra cohomology of $\hat {\mathfrak {u}} := \mathfrak {g}\otimes t\mathbb {C}[t]$; Kostant’s result on the ‘diagonal’ cohomolgy of $\hat {\mathfrak {u}}$ and its connection with abelian ideals in a Borel subalgebra of $\mathfrak {g}$; and a certain deformation of the singular cohomology of the infinite Grassmannian introduced by Belkale-Kumar.
DOI : 10.1090/S0894-0347-08-00599-7

Kumar, Shrawan 1

1 Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599–3250
@article{10_1090_S0894_0347_08_00599_7,
     author = {Kumar, Shrawan},
     title = {On the {Cachazo-Douglas-Seiberg-Witten} conjecture for simple {Lie} algebras},
     journal = {Journal of the American Mathematical Society},
     pages = {797--808},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2008},
     doi = {10.1090/S0894-0347-08-00599-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00599-7/}
}
TY  - JOUR
AU  - Kumar, Shrawan
TI  - On the Cachazo-Douglas-Seiberg-Witten conjecture for simple Lie algebras
JO  - Journal of the American Mathematical Society
PY  - 2008
SP  - 797
EP  - 808
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00599-7/
DO  - 10.1090/S0894-0347-08-00599-7
ID  - 10_1090_S0894_0347_08_00599_7
ER  - 
%0 Journal Article
%A Kumar, Shrawan
%T On the Cachazo-Douglas-Seiberg-Witten conjecture for simple Lie algebras
%J Journal of the American Mathematical Society
%D 2008
%P 797-808
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00599-7/
%R 10.1090/S0894-0347-08-00599-7
%F 10_1090_S0894_0347_08_00599_7
Kumar, Shrawan. On the Cachazo-Douglas-Seiberg-Witten conjecture for simple Lie algebras. Journal of the American Mathematical Society, Tome 21 (2008) no. 3, pp. 797-808. doi: 10.1090/S0894-0347-08-00599-7

[1] Belkale, Prakash, Kumar, Shrawan Eigenvalue problem and a new product in cohomology of flag varieties Invent. Math. 2006 185 228

[2] Bott, Raoul The space of loops on a Lie group Michigan Math. J. 1958 35 61

[3] Cachazo, Freddy, Douglas, Michael R., Seiberg, Nathan, Witten, Edward Chiral rings and anomalies in supersymmetric gauge theory J. High Energy Phys. 2002

[4] Chern, Shiing Shen, Simons, James Characteristic forms and geometric invariants Ann. of Math. (2) 1974 48 69

[5] Garland, Howard, Raghunathan, M. S. A Bruhat decomposition for the loop space of a compact group: a new approach to results of Bott Proc. Nat. Acad. Sci. U.S.A. 1975 4716 4717

[6] Kostant, Bertram Eigenvalues of the Laplacian and commutative Lie subalgebras Topology 1965 147 159

[7] Kostant, Bertram On ⋀𝔤 for a semisimple Lie algebra 𝔤, as an equivariant module over the symmetric algebra 𝔖(𝔤) 2000 129 144

[8] Kostant, Bertram Powers of the Euler product and commutative subalgebras of a complex simple Lie algebra Invent. Math. 2004 181 226

[9] Kumar, Shrawan Geometry of Schubert cells and cohomology of Kac-Moody Lie-algebras J. Differential Geom. 1984 389 431

[10] Kumar, Shrawan Rational homotopy theory of flag varieties associated to Kac-Moody groups 1985 233 273

[11] Kumar, Shrawan Kac-Moody groups, their flag varieties and representation theory 2002

[12] Pressley, Andrew, Segal, Graeme Loop groups 1986

[13] Suter, Ruedi Abelian ideals in a Borel subalgebra of a complex simple Lie algebra Invent. Math. 2004 175 221

[14] Witten, E. Chiral ring of 𝑆𝑝(𝑁) and 𝑆𝑂(𝑁) supersymmetric gauge theory in four dimensions Chinese Ann. Math. Ser. B 2003 403 414

Cité par Sources :