Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_08_00599_7,
     author = {Kumar, Shrawan},
     title = {On the {Cachazo-Douglas-Seiberg-Witten} conjecture for simple {Lie} algebras},
     journal = {Journal of the American Mathematical Society},
     pages = {797--808},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2008},
     doi = {10.1090/S0894-0347-08-00599-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00599-7/}
}
                      
                      
                    TY - JOUR AU - Kumar, Shrawan TI - On the Cachazo-Douglas-Seiberg-Witten conjecture for simple Lie algebras JO - Journal of the American Mathematical Society PY - 2008 SP - 797 EP - 808 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00599-7/ DO - 10.1090/S0894-0347-08-00599-7 ID - 10_1090_S0894_0347_08_00599_7 ER -
%0 Journal Article %A Kumar, Shrawan %T On the Cachazo-Douglas-Seiberg-Witten conjecture for simple Lie algebras %J Journal of the American Mathematical Society %D 2008 %P 797-808 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00599-7/ %R 10.1090/S0894-0347-08-00599-7 %F 10_1090_S0894_0347_08_00599_7
Kumar, Shrawan. On the Cachazo-Douglas-Seiberg-Witten conjecture for simple Lie algebras. Journal of the American Mathematical Society, Tome 21 (2008) no. 3, pp. 797-808. doi: 10.1090/S0894-0347-08-00599-7
[1] , Eigenvalue problem and a new product in cohomology of flag varieties Invent. Math. 2006 185 228
[2] The space of loops on a Lie group Michigan Math. J. 1958 35 61
[3] , , , Chiral rings and anomalies in supersymmetric gauge theory J. High Energy Phys. 2002
[4] , Characteristic forms and geometric invariants Ann. of Math. (2) 1974 48 69
[5] , A Bruhat decomposition for the loop space of a compact group: a new approach to results of Bott Proc. Nat. Acad. Sci. U.S.A. 1975 4716 4717
[6] Eigenvalues of the Laplacian and commutative Lie subalgebras Topology 1965 147 159
[7] On âð¤ for a semisimple Lie algebra ð¤, as an equivariant module over the symmetric algebra ð(ð¤) 2000 129 144
[8] Powers of the Euler product and commutative subalgebras of a complex simple Lie algebra Invent. Math. 2004 181 226
[9] Geometry of Schubert cells and cohomology of Kac-Moody Lie-algebras J. Differential Geom. 1984 389 431
[10] Rational homotopy theory of flag varieties associated to Kac-Moody groups 1985 233 273
[11] Kac-Moody groups, their flag varieties and representation theory 2002
[12] , Loop groups 1986
[13] Abelian ideals in a Borel subalgebra of a complex simple Lie algebra Invent. Math. 2004 175 221
[14] Chiral ring of ðð(ð) and ðð(ð) supersymmetric gauge theory in four dimensions Chinese Ann. Math. Ser. B 2003 403 414
Cité par Sources :