Global existence for energy critical waves in 3-d domains
Journal of the American Mathematical Society, Tome 21 (2008) no. 3, pp. 831-845

Voir la notice de l'article provenant de la source American Mathematical Society

We prove that the defocusing quintic wave equation, with Dirichlet boundary conditions, is globally well posed on $H^1_0(\Omega ) \times L^2( \Omega )$ for any smooth (compact) domain $\Omega \subset \mathbb {R}^3$. The main ingredient in the proof is an $L^5$ spectral projector estimate, obtained recently by Smith and Sogge, combined with a precise study of the boundary value problem.
DOI : 10.1090/S0894-0347-08-00596-1

Burq, Nicolas 1 ; Lebeau, Gilles 2 ; Planchon, Fabrice 3

1 Laboratoire de Mathématiques, Université Paris Sud, UMR 8628 du C.N.R.S., Bât 425, 91405 Orsay Cedex, France and Institut Universitaire de France
2 Laboratoire J.-A. Dieudonné, UMR 6621 du C.N.R.S, Université de Nice - Sophia Antipolis, Parc Valrose 06108 Nice Cedex 02, France and Institut Universitaire de France
3 Laboratoire Analyse, Géométrie & Applications, UMR 7539 du C.N.R.S, Institut Galilée, Université Paris 13, 99 avenue J.B. Clément, F-93430 Villetaneuse, France
@article{10_1090_S0894_0347_08_00596_1,
     author = {Burq, Nicolas and Lebeau, Gilles and Planchon, Fabrice},
     title = {Global existence for energy critical waves in 3-d domains},
     journal = {Journal of the American Mathematical Society},
     pages = {831--845},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2008},
     doi = {10.1090/S0894-0347-08-00596-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00596-1/}
}
TY  - JOUR
AU  - Burq, Nicolas
AU  - Lebeau, Gilles
AU  - Planchon, Fabrice
TI  - Global existence for energy critical waves in 3-d domains
JO  - Journal of the American Mathematical Society
PY  - 2008
SP  - 831
EP  - 845
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00596-1/
DO  - 10.1090/S0894-0347-08-00596-1
ID  - 10_1090_S0894_0347_08_00596_1
ER  - 
%0 Journal Article
%A Burq, Nicolas
%A Lebeau, Gilles
%A Planchon, Fabrice
%T Global existence for energy critical waves in 3-d domains
%J Journal of the American Mathematical Society
%D 2008
%P 831-845
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00596-1/
%R 10.1090/S0894-0347-08-00596-1
%F 10_1090_S0894_0347_08_00596_1
Burq, Nicolas; Lebeau, Gilles; Planchon, Fabrice. Global existence for energy critical waves in 3-d domains. Journal of the American Mathematical Society, Tome 21 (2008) no. 3, pp. 831-845. doi: 10.1090/S0894-0347-08-00596-1

[1] Burq, N., Gã©Rard, P., Tzvetkov, N. Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds Amer. J. Math. 2004 569 605

[2] Chazarain, Jacques, Piriou, Alain Introduction à la théorie des équations aux dérivées partielles linéaires 1981

[3] Chazarain, Jacques, Piriou, Alain Introduction to the theory of linear partial differential equations 1982

[4] Christ, Michael, Kiselev, Alexander Maximal functions associated to filtrations J. Funct. Anal. 2001 409 425

[5] Grillakis, Manoussos G. Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity Ann. of Math. (2) 1990 485 509

[6] Klainerman, Sergiu, Machedon, Matei Remark on Strichartz-type inequalities Internat. Math. Res. Notices 1996 201 220

[7] Mockenhaupt, Gerd, Seeger, Andreas, Sogge, Christopher D. Local smoothing of Fourier integral operators and Carleson-Sjölin estimates J. Amer. Math. Soc. 1993 65 130

[8] Rauch, Jeffrey I. The 𝑢⁵ Klein-Gordon equation. II. Anomalous singularities for semilinear wave equations 1981 335 364

[9] Shatah, Jalal, Struwe, Michael Regularity results for nonlinear wave equations Ann. of Math. (2) 1993 503 518

[10] Shatah, Jalal, Struwe, Michael Well-posedness in the energy space for semilinear wave equations with critical growth Internat. Math. Res. Notices 1994

[11] Smith, Hart F., Sogge, Christopher D. On the critical semilinear wave equation outside convex obstacles J. Amer. Math. Soc. 1995 879 916

[12] Smith, Hart F., Sogge, Christopher D. On the 𝐿^{𝑝} norm of spectral clusters for compact manifolds with boundary Acta Math. 2007 107 153

[13] Struwe, Michael Globally regular solutions to the 𝑢⁵ Klein-Gordon equation Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1988

[14] Tao, Terence Local well-posedness of the Yang-Mills equation in the temporal gauge below the energy norm J. Differential Equations 2003 366 382

[15] Tataru, Daniel Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. III J. Amer. Math. Soc. 2002 419 442

Cité par Sources :