Voir la notice de l'article provenant de la source American Mathematical Society
Burq, Nicolas 1 ; Lebeau, Gilles 2 ; Planchon, Fabrice 3
@article{10_1090_S0894_0347_08_00596_1,
     author = {Burq, Nicolas and Lebeau, Gilles and Planchon, Fabrice},
     title = {Global existence for energy critical waves in 3-d domains},
     journal = {Journal of the American Mathematical Society},
     pages = {831--845},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2008},
     doi = {10.1090/S0894-0347-08-00596-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00596-1/}
}
                      
                      
                    TY - JOUR AU - Burq, Nicolas AU - Lebeau, Gilles AU - Planchon, Fabrice TI - Global existence for energy critical waves in 3-d domains JO - Journal of the American Mathematical Society PY - 2008 SP - 831 EP - 845 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00596-1/ DO - 10.1090/S0894-0347-08-00596-1 ID - 10_1090_S0894_0347_08_00596_1 ER -
%0 Journal Article %A Burq, Nicolas %A Lebeau, Gilles %A Planchon, Fabrice %T Global existence for energy critical waves in 3-d domains %J Journal of the American Mathematical Society %D 2008 %P 831-845 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00596-1/ %R 10.1090/S0894-0347-08-00596-1 %F 10_1090_S0894_0347_08_00596_1
Burq, Nicolas; Lebeau, Gilles; Planchon, Fabrice. Global existence for energy critical waves in 3-d domains. Journal of the American Mathematical Society, Tome 21 (2008) no. 3, pp. 831-845. doi: 10.1090/S0894-0347-08-00596-1
[1] , , Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds Amer. J. Math. 2004 569 605
[2] , Introduction à la théorie des équations aux dérivées partielles linéaires 1981
[3] , Introduction to the theory of linear partial differential equations 1982
[4] , Maximal functions associated to filtrations J. Funct. Anal. 2001 409 425
[5] Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity Ann. of Math. (2) 1990 485 509
[6] , Remark on Strichartz-type inequalities Internat. Math. Res. Notices 1996 201 220
[7] , , Local smoothing of Fourier integral operators and Carleson-Sjölin estimates J. Amer. Math. Soc. 1993 65 130
[8] I. The ð¢âµ Klein-Gordon equation. II. Anomalous singularities for semilinear wave equations 1981 335 364
[9] , Regularity results for nonlinear wave equations Ann. of Math. (2) 1993 503 518
[10] , Well-posedness in the energy space for semilinear wave equations with critical growth Internat. Math. Res. Notices 1994
[11] , On the critical semilinear wave equation outside convex obstacles J. Amer. Math. Soc. 1995 879 916
[12] , On the ð¿^{ð} norm of spectral clusters for compact manifolds with boundary Acta Math. 2007 107 153
[13] Globally regular solutions to the ð¢âµ Klein-Gordon equation Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1988
[14] Local well-posedness of the Yang-Mills equation in the temporal gauge below the energy norm J. Differential Equations 2003 366 382
[15] Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. III J. Amer. Math. Soc. 2002 419 442
Cité par Sources :