Giordano, Thierry  1 ; Matui, Hiroki  2 ; Putnam, Ian  3 ; Skau, Christian  4
@article{10_1090_S0894_0347_08_00595_X,
author = {Giordano, Thierry and Matui, Hiroki and Putnam, Ian and Skau, Christian},
title = {Orbit equivalence for {Cantor} minimal {\ensuremath{\mathbb{Z}}{\texttwosuperior}-systems}},
journal = {Journal of the American Mathematical Society},
pages = {863--892},
year = {2008},
volume = {21},
number = {3},
doi = {10.1090/S0894-0347-08-00595-X},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00595-X/}
}
TY - JOUR AU - Giordano, Thierry AU - Matui, Hiroki AU - Putnam, Ian AU - Skau, Christian TI - Orbit equivalence for Cantor minimal ℤ²-systems JO - Journal of the American Mathematical Society PY - 2008 SP - 863 EP - 892 VL - 21 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00595-X/ DO - 10.1090/S0894-0347-08-00595-X ID - 10_1090_S0894_0347_08_00595_X ER -
%0 Journal Article %A Giordano, Thierry %A Matui, Hiroki %A Putnam, Ian %A Skau, Christian %T Orbit equivalence for Cantor minimal ℤ²-systems %J Journal of the American Mathematical Society %D 2008 %P 863-892 %V 21 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00595-X/ %R 10.1090/S0894-0347-08-00595-X %F 10_1090_S0894_0347_08_00595_X
Giordano, Thierry; Matui, Hiroki; Putnam, Ian; Skau, Christian. Orbit equivalence for Cantor minimal ℤ²-systems. Journal of the American Mathematical Society, Tome 21 (2008) no. 3, pp. 863-892. doi: 10.1090/S0894-0347-08-00595-X
[1] , , An amenable equivalence relation is generated by a single transformation Ergodic Theory Dynam. Systems 1981
[2] On groups of measure preserving transformations. I Amer. J. Math. 1959 119 159
[3] A Bratteli diagram for commuting homeomorphisms of the Cantor set Internat. J. Math. 2000 177 200
[4] , , Topological orbit equivalence and 𝐶*-crossed products J. Reine Angew. Math. 1995 51 111
[5] , , Affable equivalence relations and orbit structure of Cantor dynamical systems Ergodic Theory Dynam. Systems 2004 441 475
[6] , , The orbit structure of Cantor minimal ℤ²-systems 2006 145 160
[7] , , Ordered Bratteli diagrams, dimension groups and topological dynamics Internat. J. Math. 1992 827 864
[8] , , Countable Borel equivalence relations J. Math. Log. 2002 1 80
[9] , Bounded orbit injections and suspension equivalence for minimal ℤ² actions Ergodic Theory Dynam. Systems 2007 153 182
[10] A short proof of affability for certain Cantor minimal ℤ²-systems Canad. Math. Bull. 2007 418 426
[11] Affability of equivalence relations arising from two-dimensional substitution tilings Ergodic Theory Dynam. Systems 2006 467 480
[12] , Ergodic theory of amenable group actions. I. The Rohlin lemma Bull. Amer. Math. Soc. (N.S.) 1980 161 164
[13] , Entropy and isomorphism theorems for actions of amenable groups J. Analyse Math. 1987 1 141
[14] Crossed products of the Cantor set by free minimal actions of ℤ^{𝕕} Comm. Math. Phys. 2005 1 42
[15] A groupoid approach to 𝐶*-algebras 1980
Cité par Sources :