On conformally Kähler, Einstein manifolds
Journal of the American Mathematical Society, Tome 21 (2008) no. 4, pp. 1137-1168

Voir la notice de l'article provenant de la source American Mathematical Society

We prove that any compact complex surface with $c_1>0$ admits an Einstein metric which is conformally related to a Kähler metric. The key new ingredient is the existence of such a metric on the blow-up $\mathbb {CP}_2\# 2\overline {\mathbb {CP}_2}$ of the complex projective plane at two distinct points.
DOI : 10.1090/S0894-0347-08-00594-8

Chen, Xiuxiong 1 ; LeBrun, Claude 2 ; Weber, Brian 2

1 Department of Mathematics, University of Wisconsin-Madison, 480 Lincoln Dr, Madison, Wisconsin 53706-1388
2 Department of Mathematics, State University of New York, Stony Brook, New York 11794-3651
@article{10_1090_S0894_0347_08_00594_8,
     author = {Chen, Xiuxiong and LeBrun, Claude and Weber, Brian},
     title = {On conformally {K\~A{\textcurrency}hler,} {Einstein} manifolds},
     journal = {Journal of the American Mathematical Society},
     pages = {1137--1168},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2008},
     doi = {10.1090/S0894-0347-08-00594-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00594-8/}
}
TY  - JOUR
AU  - Chen, Xiuxiong
AU  - LeBrun, Claude
AU  - Weber, Brian
TI  - On conformally Kähler, Einstein manifolds
JO  - Journal of the American Mathematical Society
PY  - 2008
SP  - 1137
EP  - 1168
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00594-8/
DO  - 10.1090/S0894-0347-08-00594-8
ID  - 10_1090_S0894_0347_08_00594_8
ER  - 
%0 Journal Article
%A Chen, Xiuxiong
%A LeBrun, Claude
%A Weber, Brian
%T On conformally Kähler, Einstein manifolds
%J Journal of the American Mathematical Society
%D 2008
%P 1137-1168
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00594-8/
%R 10.1090/S0894-0347-08-00594-8
%F 10_1090_S0894_0347_08_00594_8
Chen, Xiuxiong; LeBrun, Claude; Weber, Brian. On conformally Kähler, Einstein manifolds. Journal of the American Mathematical Society, Tome 21 (2008) no. 4, pp. 1137-1168. doi: 10.1090/S0894-0347-08-00594-8

[1] Anderson, Michael T. Ricci curvature bounds and Einstein metrics on compact manifolds J. Amer. Math. Soc. 1989 455 490

[2] Anderson, Michael T. Orbifold compactness for spaces of Riemannian metrics and applications Math. Ann. 2005 739 778

[3] Anderson, Michael T. Canonical metrics on 3-manifolds and 4-manifolds Asian J. Math. 2006 127 163

[4] Atiyah, M. F. Green’s functions for self-dual four-manifolds 1981 129 158

[5] Atiyah, M. F. Convexity and commuting Hamiltonians Bull. London Math. Soc. 1982 1 15

[6] Atiyah, M. F., Hitchin, N. J., Singer, I. M. Self-duality in four-dimensional Riemannian geometry Proc. Roy. Soc. London Ser. A 1978 425 461

[7] Aubin, Thierry Équations du type Monge-Ampère sur les variétés kähleriennes compactes C. R. Acad. Sci. Paris Sér. A-B 1976

[8] Aubin, Thierry Some nonlinear problems in Riemannian geometry 1998

[9] Bach, Rudolf Zur Weylschen Relativitätstheorie und der Weylschen Erweiterung des Krümmungstensorbegriffs Math. Z. 1921 110 135

[10] Barth, W., Peters, C., Van De Ven, A. Compact complex surfaces 1984

[11] Besse, Arthur L. Einstein manifolds 1987

[12] Calabi, E. Métriques kählériennes et fibrés holomorphes Ann. Sci. École Norm. Sup. (4) 1979 269 294

[13] Calabi, Eugenio Isometric families of Kähler structures 1980 23 39

[14] Calabi, Eugenio Extremal Kähler metrics 1982 259 290

[15] Calabi, Eugenio Extremal Kähler metrics. II 1985 95 114

[16] Calderbank, David M. J., Singer, Michael A. Einstein metrics and complex singularities Invent. Math. 2004 405 443

[17] Chen, Xiuxiong, Tian, Gang Uniqueness of extremal Kähler metrics C. R. Math. Acad. Sci. Paris 2005 287 290

[18] Chern, Shiing-Shen A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds Ann. of Math. (2) 1944 747 752

[19] Derdziå„Ski, Andrzej Self-dual Kähler manifolds and Einstein manifolds of dimension four Compositio Math. 1983 405 433

[20] Donaldson, S. K. Scalar curvature and projective embeddings. I J. Differential Geom. 2001 479 522

[21] Donaldson, S. K. Scalar curvature and stability of toric varieties J. Differential Geom. 2002 289 349

[22] Friedman, Robert, Morgan, John W. Algebraic surfaces and Seiberg-Witten invariants J. Algebraic Geom. 1997 445 479

[23] Fujiki, Akira Compact self-dual manifolds with torus actions J. Differential Geom. 2000 229 324

[24] Futaki, Akito, Mabuchi, Toshiki Uniqueness and periodicity of extremal Kähler vector fields 1993 217 239

[25] Gibbons, G. W., Hawking, S. W. Classification of gravitational instanton symmetries Comm. Math. Phys. 1979 291 310

[26] Hill, C. Denson, Taylor, Michael Integrability of rough almost complex structures J. Geom. Anal. 2003 163 172

[27] Hitchin, Nigel Compact four-dimensional Einstein manifolds J. Differential Geometry 1974 435 441

[28] Hitchin, N. J. Polygons and gravitons Math. Proc. Cambridge Philos. Soc. 1979 465 476

[29] Hitchin, N. J. Kählerian twistor spaces Proc. London Math. Soc. (3) 1981 133 150

[30] Hwang, Andrew D., Simanca, Santiago R. Extremal Kähler metrics on Hirzebruch surfaces which are locally conformally equivalent to Einstein metrics Math. Ann. 1997 97 106

[31] Joyce, Dominic D. Explicit construction of self-dual 4-manifolds Duke Math. J. 1995 519 552

[32] Kronheimer, Peter Benedict Instantons gravitationnels et singularités de Klein C. R. Acad. Sci. Paris Sér. I Math. 1986 53 55

[33] Kronheimer, P. B. A Torelli-type theorem for gravitational instantons J. Differential Geom. 1989 685 697

[34] Lebrun, Claude Counter-examples to the generalized positive action conjecture Comm. Math. Phys. 1988 591 596

[35] Lebrun, Claude Explicit self-dual metrics on 𝐶𝑃₂#⋯#𝐶𝑃₂ J. Differential Geom. 1991 223 253

[36] Lebrun, Claude Twistors, Kähler manifolds, and bimeromorphic geometry. I J. Amer. Math. Soc. 1992 289 316

[37] Lebrun, Claude Anti-self-dual metrics and Kähler geometry 1995 498 507

[38] Lebrun, C. On the scalar curvature of complex surfaces Geom. Funct. Anal. 1995 619 628

[39] Lebrun, Claude Einstein metrics on complex surfaces 1997 167 176

[40] Lebrun, Claude Twistors for tourists: a pocket guide for algebraic geometers 1997 361 385

[41] Lebrun, Claude, Simanca, Santiago R. On the Kähler classes of extremal metrics 1993 255 271

[42] Lebrun, C., Simanca, S. R. Extremal Kähler metrics and complex deformation theory Geom. Funct. Anal. 1994 298 336

[43] Lee, John M., Parker, Thomas H. The Yamabe problem Bull. Amer. Math. Soc. (N.S.) 1987 37 91

[44] Lelong-Ferrand, Jacqueline Transformations conformes et quasiconformes des variétés riemanniennes C. R. Acad. Sci. Paris Sér. A-B 1969

[45] Li, Peter, Tam, Luen-Fai Harmonic functions and the structure of complete manifolds J. Differential Geom. 1992 359 383

[46] Li, Peter, Tam, Luen-Fai Green’s functions, harmonic functions, and volume comparison J. Differential Geom. 1995 277 318

[47] Lions, J.-L., Magenes, E. Non-homogeneous boundary value problems and applications. Vol. I 1972

[48] Liu, Ai-Ko Some new applications of general wall crossing formula, Gompf’s conjecture and its applications Math. Res. Lett. 1996 569 585

[49] Mabuchi, Toshiki Stability of extremal Kähler manifolds Osaka J. Math. 2004 563 582

[50] Matsushima, Yoz㴠Sur la structure du groupe d’homéomorphismes analytiques d’une certaine variété kählérienne Nagoya Math. J. 1957 145 150

[51] Obata, Morio The conjectures on conformal transformations of Riemannian manifolds J. Differential Geometry 1971/72 247 258

[52] Ohta, Hiroshi, Ono, Kaoru Notes on symplectic 4-manifolds with 𝑏⁺₂ Internat. J. Math. 1996 755 770

[53] Penrose, Roger Nonlinear gravitons and curved twistor theory Gen. Relativity Gravitation 1976 31 52

[54] Penrose, Roger, Rindler, Wolfgang Spinors and space-time. Vol. 2 1986

[55] Pontecorvo, Massimiliano Uniformization of conformally flat Hermitian surfaces Differential Geom. Appl. 1992 295 305

[56] Ross, J. Unstable products of smooth curves Invent. Math. 2006 153 162

[57] Ross, Julius, Thomas, Richard An obstruction to the existence of constant scalar curvature Kähler metrics J. Differential Geom. 2006 429 466

[58] Simanca, Santiago R. Strongly extremal Kähler metrics Ann. Global Anal. Geom. 2000 29 46

[59] Simanca, Santiago R., Stelling, Luisa D. Canonical Kähler classes Asian J. Math. 2001 585 598

[60] Thorpe, John A. Some remarks on the Gauss-Bonnet integral J. Math. Mech. 1969 779 786

[61] Tian, G. On Calabi’s conjecture for complex surfaces with positive first Chern class Invent. Math. 1990 101 172

[62] Tian, Gang Kähler-Einstein metrics with positive scalar curvature Invent. Math. 1997 1 37

[63] Tian, Gang, Viaclovsky, Jeff Bach-flat asymptotically locally Euclidean metrics Invent. Math. 2005 357 415

[64] Tian, Gang, Viaclovsky, Jeff Moduli spaces of critical Riemannian metrics in dimension four Adv. Math. 2005 346 372

[65] Tian, Gang, Yau, Shing-Tung Kähler-Einstein metrics on complex surfaces with 𝐶₁>0 Comm. Math. Phys. 1987 175 203

[66] Witten, Edward Monopoles and four-manifolds Math. Res. Lett. 1994 769 796

[67] Yau, Shing Tung Calabi’s conjecture and some new results in algebraic geometry Proc. Nat. Acad. Sci. U.S.A. 1977 1798 1799

Cité par Sources :