Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries
Journal of the American Mathematical Society, Tome 21 (2008) no. 3, pp. 847-862

Voir la notice de l'article provenant de la source American Mathematical Society

Here we study the asymptotic limits of solutions of some singularly perturbed elliptic systems. The limiting problems involve multiple valued harmonic functions or, in general, harmonic maps to singular spaces and free interfaces between supports of various components of the maps. The main results of the paper are the uniform Lipschitz regularity of solutions as well as the regularity of free interfaces.
DOI : 10.1090/S0894-0347-08-00593-6

Caffarelli, L. 1 ; Lin, Fang-Hua 2

1 Department of Mathematics, University of Texas at Austin, Austin, Texas 78712
2 Department of Mathematics, Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012
@article{10_1090_S0894_0347_08_00593_6,
     author = {Caffarelli, L. and Lin, Fang-Hua},
     title = {Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries},
     journal = {Journal of the American Mathematical Society},
     pages = {847--862},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2008},
     doi = {10.1090/S0894-0347-08-00593-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00593-6/}
}
TY  - JOUR
AU  - Caffarelli, L.
AU  - Lin, Fang-Hua
TI  - Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries
JO  - Journal of the American Mathematical Society
PY  - 2008
SP  - 847
EP  - 862
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00593-6/
DO  - 10.1090/S0894-0347-08-00593-6
ID  - 10_1090_S0894_0347_08_00593_6
ER  - 
%0 Journal Article
%A Caffarelli, L.
%A Lin, Fang-Hua
%T Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries
%J Journal of the American Mathematical Society
%D 2008
%P 847-862
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00593-6/
%R 10.1090/S0894-0347-08-00593-6
%F 10_1090_S0894_0347_08_00593_6
Caffarelli, L.; Lin, Fang-Hua. Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries. Journal of the American Mathematical Society, Tome 21 (2008) no. 3, pp. 847-862. doi: 10.1090/S0894-0347-08-00593-6

[1] Almgren, F. J., Jr. 𝑄 valued functions minimizing Dirichlet’s integral and the regularity of area minimizing rectifiable currents up to codimension two Bull. Amer. Math. Soc. (N.S.) 1983 327 328

[2] Bucur, Dorin, Buttazzo, Giuseppe, Henrot, Antoine Existence results for some optimal partition problems Adv. Math. Sci. Appl. 1998 571 579

[3] Buttazzo, Giuseppe, Dal Maso, Gianni Shape optimization for Dirichlet problems: relaxed formulation and optimality conditions Appl. Math. Optim. 1991 17 49

[4] Buttazzo, Giuseppe, Dal Maso, Gianni An existence result for a class of shape optimization problems Arch. Rational Mech. Anal. 1993 183 195

[5] Bucur, Dorin, Zolã©Sio, Jean-Paul 𝑁-dimensional shape optimization under capacitary constraint J. Differential Equations 1995 504 522

[6] Cafferelli, L. A., Lin, Fang Hua An optimal partition problem for eigenvalues J. Sci. Comput. 2007 5 18

[7] Chang, Shu-Ming, Lin, Chang-Shou, Lin, Tai-Chia, Lin, Wen-Wei Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates Phys. D 2004 341 361

[8] Caffarelli, Luis A., Roquejoffre, Jean-Michel Uniform Hölder estimates in a class of elliptic systems and applications to singular limits in models for diffusion flames Arch. Ration. Mech. Anal. 2007 457 487

[9] Conti, M., Terracini, S., Verzini, G. Nehari’s problem and competing species systems Ann. Inst. H. Poincaré C Anal. Non Linéaire 2002 871 888

[10] Conti, M., Terracini, S., Verzini, G. An optimal partition problem related to nonlinear eigenvalues J. Funct. Anal. 2003 160 196

[11] Conti, Monica, Terracini, Susanna, Verzini, G. Asymptotic estimates for the spatial segregation of competitive systems Adv. Math. 2005 524 560

[12] Conti, Monica, Terracini, Susanna, Verzini, Gianmaria A variational problem for the spatial segregation of reaction-diffusion systems Indiana Univ. Math. J. 2005 779 815

[13] Garofalo, Nicola, Lin, Fang-Hua Monotonicity properties of variational integrals, 𝐴_{𝑝} weights and unique continuation Indiana Univ. Math. J. 1986 245 268

[14] Jones, Peter W. A geometric localization theorem Adv. in Math. 1982 71 79

[15] Lin, Fang-Hua Static and moving vortices in Ginzburg-Landau theories 1997 71 111

[16] Lin, Fanghua, Yang, Xiaoping Geometric measure theory—an introduction 2002

[17] Lin, Fang-Hua Nodal sets of solutions of elliptic and parabolic equations Comm. Pure Appl. Math. 1991 287 308

[18] Morrey, Charles B., Jr. Multiple integrals in the calculus of variations 1966

[19] Schoen, Richard M. Analytic aspects of the harmonic map problem 1984 321 358

[20] Å Verã¡K, V. On optimal shape design J. Math. Pures Appl. (9) 1993 537 551

[21] Ziemer, William P. Weakly differentiable functions 1989

Cité par Sources :