The dynamics of pseudographs in convex Hamiltonian systems
Journal of the American Mathematical Society, Tome 21 (2008) no. 3, pp. 615-669

Voir la notice de l'article provenant de la source American Mathematical Society

We study the evolution, under convex Hamiltonian flows on cotangent bundles of compact manifolds, of certain distinguished subsets of the phase space. These subsets are generalizations of Lagrangian graphs, which we call pseudographs. They emerge in a natural way from Fathi’s weak KAM theory. By this method, we find various orbits which connect prescribed regions of the phase space. Our study was inspired by works of John Mather. As an application, we obtain the existence of diffusion in a large class of a priori unstable systems and provide a solution to the large gap problem. We hope that our method will have applications to more examples. Résumé. Nous étudions l’évolution, par le flot d’un Hamiltonien convexe sur une variété compacte, de certains ensembles de l’espace des phases. Nous appelons pseudographes ces ensembles, qui sont des généralisations de graphes Lagrangiens apparaissant de manière naturelle dans la théorie KAM faible de Fathi. Par cette méthode, nous trouvons diverses orbites qui joignent des domaines donnés de l’espace des phases. Notre étude s’inspire de travaux de John Mather. Nous obtenons l’existence de diffusion dans une large classe de systèmes à priori instables comme application de cette méthode, qui permet de résoudre le probleme de l’écart entre les tores invariants. Nous espérons que la méthode s’appliquera à d’autres exemples.
DOI : 10.1090/S0894-0347-08-00591-2

Bernard, Patrick 1

1 Université Paris-Dauphine, CEREMADE, UMR CNRS 7534, Place Marechal Lattre Tassigny, 75775 Paris, Cedex 16, France
@article{10_1090_S0894_0347_08_00591_2,
     author = {Bernard, Patrick},
     title = {The dynamics of pseudographs in convex {Hamiltonian} systems},
     journal = {Journal of the American Mathematical Society},
     pages = {615--669},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2008},
     doi = {10.1090/S0894-0347-08-00591-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00591-2/}
}
TY  - JOUR
AU  - Bernard, Patrick
TI  - The dynamics of pseudographs in convex Hamiltonian systems
JO  - Journal of the American Mathematical Society
PY  - 2008
SP  - 615
EP  - 669
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00591-2/
DO  - 10.1090/S0894-0347-08-00591-2
ID  - 10_1090_S0894_0347_08_00591_2
ER  - 
%0 Journal Article
%A Bernard, Patrick
%T The dynamics of pseudographs in convex Hamiltonian systems
%J Journal of the American Mathematical Society
%D 2008
%P 615-669
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00591-2/
%R 10.1090/S0894-0347-08-00591-2
%F 10_1090_S0894_0347_08_00591_2
Bernard, Patrick. The dynamics of pseudographs in convex Hamiltonian systems. Journal of the American Mathematical Society, Tome 21 (2008) no. 3, pp. 615-669. doi: 10.1090/S0894-0347-08-00591-2

[1] Arnol′D, V. I. Instability of dynamical systems with many degrees of freedom Dokl. Akad. Nauk SSSR 1964 9 12

[2] Bernard, Patrick Homoclinic orbits to invariant sets of quasi-integrable exact maps Ergodic Theory Dynam. Systems 2000 1583 1601

[3] Bernard, Patrick Connecting orbits of time dependent Lagrangian systems Ann. Inst. Fourier (Grenoble) 2002 1533 1568

[4] Bernard, Patrick The action spectrum near positive definite invariant tori Bull. Soc. Math. France 2003 603 616

[5] Berti, Massimiliano, Biasco, Luca, Bolle, Philippe Drift in phase space: a new variational mechanism with optimal diffusion time J. Math. Pures Appl. (9) 2003 613 664

[6] Bessi, Ugo An approach to Arnol′d’s diffusion through the calculus of variations Nonlinear Anal. 1996 1115 1135

[7] Bolotin, S., Treschev, D. Unbounded growth of energy in nonautonomous Hamiltonian systems Nonlinearity 1999 365 388

[8] Cheng, Chong-Qing, Yan, Jun Existence of diffusion orbits in a priori unstable Hamiltonian systems J. Differential Geom. 2004 457 517

[9] Contreras, Gonzalo, Paternain, Gabriel P. Connecting orbits between static classes for generic Lagrangian systems Topology 2002 645 666

[10] Contreras, Gonzalo, Delgado, Jorge, Iturriaga, Renato Lagrangian flows: the dynamics of globally minimizing orbits. II Bol. Soc. Brasil. Mat. (N.S.) 1997 155 196

[11] Delshams, Amadeu, De La Llave, Rafael, Seara, Tere M. A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: announcement of results Electron. Res. Announc. Amer. Math. Soc. 2003 125 134

[12] E, Weinan Aubry-Mather theory and periodic solutions of the forced Burgers equation Comm. Pure Appl. Math. 1999 811 828

[13] Fathi, Albert Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens C. R. Acad. Sci. Paris Sér. I Math. 1997 1043 1046

[14] Fathi, Albert Solutions KAM faibles conjuguées et barrières de Peierls C. R. Acad. Sci. Paris Sér. I Math. 1997 649 652

[15] Fathi, Albert Orbites hétéroclines et ensemble de Peierls C. R. Acad. Sci. Paris Sér. I Math. 1998 1213 1216

[16] Kaloshin, V. Geometric proofs of Mather’s connecting and accelerating theorems 2003 81 106

[17] Katznelson, Y., Ornstein, D. S. Twist maps and Aubry-Mather sets 1997 343 357

[18] Lochak, Pierre Arnold diffusion 1999 168 183

[19] Marco, Jean-Pierre, Sauzin, David Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems Publ. Math. Inst. Hautes Études Sci. 2002

[20] Mather, John N. Action minimizing invariant measures for positive definite Lagrangian systems Math. Z. 1991 169 207

[21] Mather, John N. Variational construction of connecting orbits Ann. Inst. Fourier (Grenoble) 1993 1349 1386

[22] Mã¨Zer, Dzh. N. Arnol′d diffusion. I. Announcement of results Sovrem. Mat. Fundam. Napravl. 2003 116 130

[23] Maã±Ã©, Ricardo Lagrangian flows: the dynamics of globally minimizing orbits Bol. Soc. Brasil. Mat. (N.S.) 1997 141 153

[24] Siburg, Karl Friedrich The principle of least action in geometry and dynamics 2004

[25] Treschev, D. Evolution of slow variables in a priori unstable Hamiltonian systems Nonlinearity 2004 1803 1841

[26] Xia, Zhihong Arnold diffusion: a variational construction Doc. Math. 1998 867 877

Cité par Sources :