Presentations of finite simple groups: A quantitative approach
Journal of the American Mathematical Society, Tome 21 (2008) no. 3, pp. 711-774

Voir la notice de l'article provenant de la source American Mathematical Society

There is a constant $C_0$ such that all nonabelian finite simple groups of rank $n$ over $\mathbb {F}_q$, with the possible exception of the Ree groups $^2G_2(3^{2e+1})$, have presentations with at most $C_0$ generators and relations and total length at most $C_0(\log n +\log q)$. As a corollary, we deduce a conjecture of Holt: there is a constant $C$ such that $\dim H^2(G,M) \leq C\dim M$ for every finite simple group $G$, every prime $p$ and every irreducible ${\mathbb F}_p G$-module $M$.
DOI : 10.1090/S0894-0347-08-00590-0

Guralnick, R. 1 ; Kantor, W. 2 ; Kassabov, M. 3 ; Lubotzky, A. 4

1 Department of Mathematics, University of Southern California, Los Angeles, California 90089-2532
2 Department of Mathematics, University of Oregon, Eugene, Oregon 97403
3 Department of Mathematics, Cornell University, Ithaca, New York 14853-4201
4 Department of Mathematics, Hebrew University, Givat Ram, Jerusalem 91904, Israel
@article{10_1090_S0894_0347_08_00590_0,
     author = {Guralnick, R. and Kantor, W. and Kassabov, M. and Lubotzky, A.},
     title = {Presentations of finite simple groups: {A} quantitative approach},
     journal = {Journal of the American Mathematical Society},
     pages = {711--774},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2008},
     doi = {10.1090/S0894-0347-08-00590-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00590-0/}
}
TY  - JOUR
AU  - Guralnick, R.
AU  - Kantor, W.
AU  - Kassabov, M.
AU  - Lubotzky, A.
TI  - Presentations of finite simple groups: A quantitative approach
JO  - Journal of the American Mathematical Society
PY  - 2008
SP  - 711
EP  - 774
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00590-0/
DO  - 10.1090/S0894-0347-08-00590-0
ID  - 10_1090_S0894_0347_08_00590_0
ER  - 
%0 Journal Article
%A Guralnick, R.
%A Kantor, W.
%A Kassabov, M.
%A Lubotzky, A.
%T Presentations of finite simple groups: A quantitative approach
%J Journal of the American Mathematical Society
%D 2008
%P 711-774
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00590-0/
%R 10.1090/S0894-0347-08-00590-0
%F 10_1090_S0894_0347_08_00590_0
Guralnick, R.; Kantor, W.; Kassabov, M.; Lubotzky, A. Presentations of finite simple groups: A quantitative approach. Journal of the American Mathematical Society, Tome 21 (2008) no. 3, pp. 711-774. doi: 10.1090/S0894-0347-08-00590-0

[1] Aschbacher, M., Guralnick, R. Some applications of the first cohomology group J. Algebra 1984 446 460

[2] Babai, L., Goodman, A. J., Kantor, W. M., Luks, E. M., Pã¡Lfy, P. P. Short presentations for finite groups J. Algebra 1997 79 112

[3] Babai, L., Kantor, W. M., Lubotsky, A. Small-diameter Cayley graphs for finite simple groups European J. Combin. 1989 507 522

[4] Baumslag, Gilbert A finitely presented metabelian group with a free abelian derived group of infinite rank Proc. Amer. Math. Soc. 1972 61 62

[5] Behr, H., Mennicke, J. A presentation of the groups 𝑃𝑆𝐿(2,𝑝) Canadian J. Math. 1968 1432 1438

[6] Bennett, Curtis D., Shpectorov, Sergey A new proof of a theorem of Phan J. Group Theory 2004 287 310

[7] Burnside, W. Theory of groups of finite order 1955

[8] Campbell, C. M., Campbell, P. P., Hopson, B. T. K., Robertson, E. F. On the efficiency of direct powers of 𝑃𝐺𝐿(2,𝑝) 2003 27 34

[9] Campbell, Colin, Havas, George, Linton, Stephen, Robertson, Edmund Symmetric presentations and orthogonal groups 1998 1 10

[10] Campbell, Colin M., Havas, George, Ramsay, Colin, Robertson, Edmund F. Nice efficient presentations for all small simple groups and their covers LMS J. Comput. Math. 2004 266 283

[11] Campbell, C. M., Robertson, E. F. Classes of groups related to 𝐹^{𝑎,𝑏,𝑐} Proc. Roy. Soc. Edinburgh Sect. A 1977/78 209 218

[12] Campbell, C. M., Robertson, E. F. A deficiency zero presentation for 𝑆𝐿(2,𝑝) Bull. London Math. Soc. 1980 17 20

[13] Campbell, C. M., Robertson, E. F., Williams, P. D. On presentations of 𝑃𝑆𝐿(2,𝑝ⁿ) J. Austral. Math. Soc. Ser. A 1990 333 346

[14] Campbell, Colin M., Robertson, E. F., Williams, P. D. Efficient presentations for finite simple groups and related groups 1989 65 72

[15] Carmichael, Robert D. Introduction to the theory of groups of finite order 1956

[16] Coxeter, H. S. M., Moser, W. O. J. Generators and relations for discrete groups 1972

[17] Curtis, Charles W. Central extensions of groups of Lie type J. Reine Angew. Math. 1965 174 185

[18] ĐOkoviä‡, Dragomir Ž. Presentations of some finite simple groups J. Austral. Math. Soc. Ser. A 1988 143 168

[19] Gorenstein, Daniel, Lyons, Richard, Solomon, Ronald The classification of the finite simple groups. Number 3. Part I. Chapter A 1998

[20] Gramlich, R., Hoffman, C., Nickel, W., Shpectorov, S. Even-dimensional orthogonal groups as amalgams of unitary groups J. Algebra 2005 141 173

[21] Gramlich, Ralf, Hoffman, Corneliu, Shpectorov, Sergey A Phan-type theorem for 𝑆𝑝(2𝑛,𝑞) J. Algebra 2003 358 384

[22] Griess, Robert L., Jr. Schur multipliers of finite simple groups of Lie type Trans. Amer. Math. Soc. 1973 355 421

[23] Gruenberg, Karl W. Cohomological topics in group theory 1970

[24] Holt, D. F. On the second cohomology group of a finite group Proc. London Math. Soc. (3) 1987 22 36

[25] Holt, Derek F., Eick, Bettina, O’Brien, Eamonn A. Handbook of computational group theory 2005

[26] Hulpke, Alexander, Seress, ÁKos Short presentations for three-dimensional unitary groups J. Algebra 2001 719 729

[27] Kantor, William M. Some topics in asymptotic group theory 1992 403 421

[28] Kantor, William M., Seress, ÁKos Black box classical groups Mem. Amer. Math. Soc. 2001

[29] Kantor, William M., Seress, ÁKos Computing with matrix groups 2003 123 137

[30] Kemper, Gregor, Lã¼Beck, Frank, Magaard, Kay Matrix generators for the Ree groups ²𝐺₂(𝑞) Comm. Algebra 2001 407 413

[31] Korchagina, Inna, Lubotzky, Alexander On presentations and second cohomology of some finite simple groups Publ. Math. Debrecen 2006 341 352

[32] Krstiä‡, Sava, Mccool, James Presenting 𝐺𝐿_{𝑛}(𝑘⟨𝑇⟩) J. Pure Appl. Algebra 1999 175 183

[33] Leedham-Green, Charles R. The computational matrix group project 2001 229 247

[34] Lubotzky, Alexander Enumerating boundedly generated finite groups J. Algebra 2001 194 199

[35] Lubotzky, Alexander Pro-finite presentations J. Algebra 2001 672 690

[36] Lubotzky, Alexander Finite presentations of adelic groups, the congruence kernel and cohomology of finite simple groups Pure Appl. Math. Q. 2005 241 256

[37] Lubotzky, Alexander, Segal, Dan Subgroup growth 2003

[38] Magnus, Wilhelm, Karrass, Abraham, Solitar, Donald Combinatorial group theory: Presentations of groups in terms of generators and relations 1966

[39] Mann, Avinoam Enumerating finite groups and their defining relations J. Group Theory 1998 59 64

[40] Margulis, G. A. Discrete subgroups of semisimple Lie groups 1991

[41] Miller, G. A. Abstract Definitions of all the Substitution Groups Whose Degrees do not Exceed Seven Amer. J. Math. 1911 363 372

[42] Phan, Kok Wee On groups generated by three-dimensional special unitary groups. I J. Austral. Math. Soc. Ser. A 1977 67 77

[43] Pyber, L. Enumerating finite groups of given order Ann. of Math. (2) 1993 203 220

[44] Seress, ÁKos Permutation group algorithms 2003

[45] Serre, Jean-Pierre Le problème des groupes de congruence pour SL2 Ann. of Math. (2) 1970 489 527

[46] Serre, Jean-Pierre Trees 2003

[47] Shinoda, Ken-Ichi The conjugacy classes of the finite Ree groups of type (𝐹₄) J. Fac. Sci. Univ. Tokyo Sect. IA Math. 1975 1 15

[48] Sims, Charles C. Computation with finitely presented groups 1994

[49] Steinberg, Robert Lectures on Chevalley groups 1968

[50] Steinberg, Robert Generators, relations and coverings of algebraic groups. II J. Algebra 1981 527 543

[51] Sunday, J. G. Presentations of the groups 𝑆𝐿(2,𝑚) and 𝑃𝑆𝐿(2,𝑚) Canadian J. Math. 1972 1129 1131

[52] Suzuki, Michio On a class of doubly transitive groups Ann. of Math. (2) 1962 105 145

[53] Tits, J. Les groupes de Lie exceptionnels et leur interprétation géométrique Bull. Soc. Math. Belg. 1956 48 81

[54] Tits, Jacques Buildings of spherical type and finite BN-pairs 1974

[55] Wilson, John S. Finite axiomatization of finite soluble groups J. London Math. Soc. (2) 2006 566 582

Cité par Sources :