Link Floer homology and the Thurston norm
Journal of the American Mathematical Society, Tome 21 (2008) no. 3, pp. 671-709

Voir la notice de l'article provenant de la source American Mathematical Society

We show that link Floer homology detects the Thurston norm of a link complement. As an application, we show that the Thurston polytope of an alternating link is dual to the Newton polytope of its multi-variable Alexander polynomial. To illustrate these techniques, we also compute the Thurston polytopes of several specific link complements.
DOI : 10.1090/S0894-0347-08-00586-9

Ozsváth, Peter 1 ; Szabó, Zoltán 2

1 Department of Mathematics, Columbia University, New York, New York 10027
2 Department of Mathematics, Princeton University, Princeton, New Jersey 08544
@article{10_1090_S0894_0347_08_00586_9,
     author = {Ozsv\~A{\textexclamdown}th, Peter and Szab\~A{\textthreesuperior}, Zolt\~A{\textexclamdown}n},
     title = {Link {Floer} homology and the {Thurston} norm},
     journal = {Journal of the American Mathematical Society},
     pages = {671--709},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2008},
     doi = {10.1090/S0894-0347-08-00586-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00586-9/}
}
TY  - JOUR
AU  - Ozsváth, Peter
AU  - Szabó, Zoltán
TI  - Link Floer homology and the Thurston norm
JO  - Journal of the American Mathematical Society
PY  - 2008
SP  - 671
EP  - 709
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00586-9/
DO  - 10.1090/S0894-0347-08-00586-9
ID  - 10_1090_S0894_0347_08_00586_9
ER  - 
%0 Journal Article
%A Ozsváth, Peter
%A Szabó, Zoltán
%T Link Floer homology and the Thurston norm
%J Journal of the American Mathematical Society
%D 2008
%P 671-709
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00586-9/
%R 10.1090/S0894-0347-08-00586-9
%F 10_1090_S0894_0347_08_00586_9
Ozsváth, Peter; Szabó, Zoltán. Link Floer homology and the Thurston norm. Journal of the American Mathematical Society, Tome 21 (2008) no. 3, pp. 671-709. doi: 10.1090/S0894-0347-08-00586-9

[1] Murasugi, Kunio On the genus of the alternating knot. I, II J. Math. Soc. Japan 1958

[2] Donaldson, S. K. Lefschetz pencils on symplectic manifolds J. Differential Geom. 1999 205 236

[3] Eisenbud, David, Neumann, Walter Three-dimensional link theory and invariants of plane curve singularities 1985

[4] Etnyre, John B. On symplectic fillings Algebr. Geom. Topol. 2004 73 80

[5] Eliashberg, Yakov M., Thurston, William P. Confoliations 1998

[6] Etnyre, John B. On symplectic fillings Algebr. Geom. Topol. 2004 73 80

[7] Floer, Andreas Morse theory for Lagrangian intersections J. Differential Geom. 1988 513 547

[8] Floer, Andreas The unregularized gradient flow of the symplectic action Comm. Pure Appl. Math. 1988 775 813

[9] Gabai, David Foliations and the topology of 3-manifolds J. Differential Geom. 1983 445 503

[10] Gabai, David Foliations and the topology of 3-manifolds. II J. Differential Geom. 1987 461 478

[11] Hedden, Matthew On knot Floer homology and cabling Algebr. Geom. Topol. 2005 1197 1222

[12] Kronheimer, P. B., Mrowka, T. S. Scalar curvature and the Thurston norm Math. Res. Lett. 1997 931 937

[13] Kronheimer, P., Mrowka, T., Ozsvã¡Th, P., Szabã³, Z. Monopoles and lens space surgeries Ann. of Math. (2) 2007 457 546

[14] Mcmullen, Curtis T. The Alexander polynomial of a 3-manifold and the Thurston norm on cohomology Ann. Sci. École Norm. Sup. (4) 2002 153 171

[15] Murasugi, Kunio On the Alexander polynomial of alternating algebraic knots J. Austral. Math. Soc. Ser. A 1985 317 333

[16] Ni, Yi A note on knot Floer homology of links Geom. Topol. 2006 695 713

[17] Ni, Yi Sutured Heegaard diagrams for knots Algebr. Geom. Topol. 2006 513 537

[18] Ozsvã¡Th, Peter, Szabã³, Zoltã¡N Heegaard Floer homology and alternating knots Geom. Topol. 2003 225 254

[19] Ozsvã¡Th, Peter, Szabã³, Zoltã¡N Heegaard diagrams and holomorphic disks 2004 301 348

[20] Ozsvã¡Th, Peter, Szabã³, Zoltã¡N Holomorphic disks and genus bounds Geom. Topol. 2004 311 334

[21] Ozsvã¡Th, Peter, Szabã³, Zoltã¡N Holomorphic disks and knot invariants Adv. Math. 2004 58 116

[22] Ozsvã¡Th, Peter, Szabã³, Zoltã¡N Holomorphic disks and topological invariants for closed three-manifolds Ann. of Math. (2) 2004 1027 1158

[23] Ozsvã¡Th, Peter, Szabã³, Zoltã¡N Heegaard Floer homology and contact structures Duke Math. J. 2005 39 61

[24] Rolfsen, Dale Knots and links 1990

[25] Thurston, William P. A norm for the homology of 3-manifolds Mem. Amer. Math. Soc. 1986

[26] Turaev, Vladimir Torsions of 3-manifolds 2002 295 302

Cité par Sources :