Voir la notice de l'article provenant de la source American Mathematical Society
Ozsváth, Peter 1 ; Szabó, Zoltán 2
@article{10_1090_S0894_0347_08_00586_9,
author = {Ozsv\~A{\textexclamdown}th, Peter and Szab\~A{\textthreesuperior}, Zolt\~A{\textexclamdown}n},
title = {Link {Floer} homology and the {Thurston} norm},
journal = {Journal of the American Mathematical Society},
pages = {671--709},
publisher = {mathdoc},
volume = {21},
number = {3},
year = {2008},
doi = {10.1090/S0894-0347-08-00586-9},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00586-9/}
}
TY - JOUR AU - Ozsváth, Peter AU - Szabó, Zoltán TI - Link Floer homology and the Thurston norm JO - Journal of the American Mathematical Society PY - 2008 SP - 671 EP - 709 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00586-9/ DO - 10.1090/S0894-0347-08-00586-9 ID - 10_1090_S0894_0347_08_00586_9 ER -
%0 Journal Article %A Ozsváth, Peter %A Szabó, Zoltán %T Link Floer homology and the Thurston norm %J Journal of the American Mathematical Society %D 2008 %P 671-709 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00586-9/ %R 10.1090/S0894-0347-08-00586-9 %F 10_1090_S0894_0347_08_00586_9
Ozsváth, Peter; Szabó, Zoltán. Link Floer homology and the Thurston norm. Journal of the American Mathematical Society, Tome 21 (2008) no. 3, pp. 671-709. doi: 10.1090/S0894-0347-08-00586-9
[1] On the genus of the alternating knot. I, II J. Math. Soc. Japan 1958
[2] Lefschetz pencils on symplectic manifolds J. Differential Geom. 1999 205 236
[3] , Three-dimensional link theory and invariants of plane curve singularities 1985
[4] On symplectic fillings Algebr. Geom. Topol. 2004 73 80
[5] , Confoliations 1998
[6] On symplectic fillings Algebr. Geom. Topol. 2004 73 80
[7] Morse theory for Lagrangian intersections J. Differential Geom. 1988 513 547
[8] The unregularized gradient flow of the symplectic action Comm. Pure Appl. Math. 1988 775 813
[9] Foliations and the topology of 3-manifolds J. Differential Geom. 1983 445 503
[10] Foliations and the topology of 3-manifolds. II J. Differential Geom. 1987 461 478
[11] On knot Floer homology and cabling Algebr. Geom. Topol. 2005 1197 1222
[12] , Scalar curvature and the Thurston norm Math. Res. Lett. 1997 931 937
[13] , , , Monopoles and lens space surgeries Ann. of Math. (2) 2007 457 546
[14] The Alexander polynomial of a 3-manifold and the Thurston norm on cohomology Ann. Sci. Ãcole Norm. Sup. (4) 2002 153 171
[15] On the Alexander polynomial of alternating algebraic knots J. Austral. Math. Soc. Ser. A 1985 317 333
[16] A note on knot Floer homology of links Geom. Topol. 2006 695 713
[17] Sutured Heegaard diagrams for knots Algebr. Geom. Topol. 2006 513 537
[18] , Heegaard Floer homology and alternating knots Geom. Topol. 2003 225 254
[19] , Heegaard diagrams and holomorphic disks 2004 301 348
[20] , Holomorphic disks and genus bounds Geom. Topol. 2004 311 334
[21] , Holomorphic disks and knot invariants Adv. Math. 2004 58 116
[22] , Holomorphic disks and topological invariants for closed three-manifolds Ann. of Math. (2) 2004 1027 1158
[23] , Heegaard Floer homology and contact structures Duke Math. J. 2005 39 61
[24] Knots and links 1990
[25] A norm for the homology of 3-manifolds Mem. Amer. Math. Soc. 1986
[26] Torsions of 3-manifolds 2002 295 302
Cité par Sources :