Measurable rigidity of actions on infinite measure homogeneous spaces, II
Journal of the American Mathematical Society, Tome 21 (2008) no. 2, pp. 479-512

Voir la notice de l'article provenant de la source American Mathematical Society

We consider the problems of measurable isomorphisms and joinings, measurable centralizers and quotients for certain classes of ergodic group actions on infinite measure spaces. Our main focus is on systems of algebraic origin: actions of lattices and other discrete subgroups $\Gamma $ on homogeneous spaces $G/H$ where $H$ is a sufficiently rich unimodular subgroup in a semi-simple group $G$. We also consider actions of discrete groups of isometries $\Gamma \mathrm {Isom}(X)$ of a pinched negative curvature space $X$, acting on the space of horospheres $\mathrm {Hor}(X)$. For such systems we prove that the only measurable isomorphisms, joinings, quotients, etc., are the obvious algebraic (or geometric) ones. This work was inspired by the previous work of Shalom and Steger but uses completely different techniques which lead to more general results.
DOI : 10.1090/S0894-0347-07-00588-7

Furman, Alex 1

1 Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, Illinois 60607
@article{10_1090_S0894_0347_07_00588_7,
     author = {Furman, Alex},
     title = {Measurable rigidity of actions on infinite measure homogeneous spaces, {II}},
     journal = {Journal of the American Mathematical Society},
     pages = {479--512},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2008},
     doi = {10.1090/S0894-0347-07-00588-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00588-7/}
}
TY  - JOUR
AU  - Furman, Alex
TI  - Measurable rigidity of actions on infinite measure homogeneous spaces, II
JO  - Journal of the American Mathematical Society
PY  - 2008
SP  - 479
EP  - 512
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00588-7/
DO  - 10.1090/S0894-0347-07-00588-7
ID  - 10_1090_S0894_0347_07_00588_7
ER  - 
%0 Journal Article
%A Furman, Alex
%T Measurable rigidity of actions on infinite measure homogeneous spaces, II
%J Journal of the American Mathematical Society
%D 2008
%P 479-512
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00588-7/
%R 10.1090/S0894-0347-07-00588-7
%F 10_1090_S0894_0347_07_00588_7
Furman, Alex. Measurable rigidity of actions on infinite measure homogeneous spaces, II. Journal of the American Mathematical Society, Tome 21 (2008) no. 2, pp. 479-512. doi: 10.1090/S0894-0347-07-00588-7

[1] Babillot, Martine, Ledrappier, Franã§Ois Geodesic paths and horocycle flow on abelian covers 1998 1 32

[2] Borel, Armand, Tits, Jacques Groupes réductifs Inst. Hautes Études Sci. Publ. Math. 1965 55 150

[3] Borel, Armand, Tits, Jacques Homomorphismes “abstraits” de groupes algébriques simples Ann. of Math. (2) 1973 499 571

[4] Dal’Bo, Franã§Oise Remarques sur le spectre des longueurs d’une surface et comptages Bol. Soc. Brasil. Mat. (N.S.) 1999 199 221

[5] Furstenberg, Harry Boundary theory and stochastic processes on homogeneous spaces 1973 193 229

[6] Furstenberg, Harry Rigidity and cocycles for ergodic actions of semisimple Lie groups (after G. A. Margulis and R. Zimmer) 1981 273 292

[7] Guivarc’H, Y. Propriétés ergodiques, en mesure infinie, de certains systèmes dynamiques fibrés Ergodic Theory Dynam. Systems 1989 433 453

[8] Hamenstã¤Dt, U. Cocycles, symplectic structures and intersection Geom. Funct. Anal. 1999 90 140

[9] Kaimanovich, Vadim A. Ergodicity of the horocycle flow 2000 274 286

[10] Kaimanovich, Vadim A. SAT actions and ergodic properties of the horosphere foliation 2002 261 282

[11] Lubotzky, Alexander Eigenvalues of the Laplacian, the first Betti number and the congruence subgroup problem Ann. of Math. (2) 1996 441 452

[12] Margulis, G. A. Discrete subgroups of semisimple Lie groups 1991

[13] Otal, Jean-Pierre Le spectre marqué des longueurs des surfaces à courbure négative Ann. of Math. (2) 1990 151 162

[14] Otal, Jean-Pierre The hyperbolization theorem for fibered 3-manifolds 2001

[15] Raghunathan, M. S., Venkataramana, T. N. The first Betti number of arithmetic groups and the congruence subgroup problem 1993 95 107

[16] Ratner, Marina Rigidity of horocycle flows Ann. of Math. (2) 1982 597 614

[17] Ratner, Marina Factors of horocycle flows Ergodic Theory Dynam. Systems 1982

[18] Ratner, Marina Horocycle flows, joinings and rigidity of products Ann. of Math. (2) 1983 277 313

[19] Ratner, Marina Interactions between ergodic theory, Lie groups, and number theory 1995 157 182

[20] Sullivan, Dennis Discrete conformal groups and measurable dynamics Bull. Amer. Math. Soc. (N.S.) 1982 57 73

[21] Yue, Chengbo The ergodic theory of discrete isometry groups on manifolds of variable negative curvature Trans. Amer. Math. Soc. 1996 4965 5005

Cité par Sources :