Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_07_00584_X,
author = {Belkale, Prakash},
title = {Quantum generalization of the {Horn} conjecture},
journal = {Journal of the American Mathematical Society},
pages = {365--408},
publisher = {mathdoc},
volume = {21},
number = {2},
year = {2008},
doi = {10.1090/S0894-0347-07-00584-X},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00584-X/}
}
TY - JOUR AU - Belkale, Prakash TI - Quantum generalization of the Horn conjecture JO - Journal of the American Mathematical Society PY - 2008 SP - 365 EP - 408 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00584-X/ DO - 10.1090/S0894-0347-07-00584-X ID - 10_1090_S0894_0347_07_00584_X ER -
%0 Journal Article %A Belkale, Prakash %T Quantum generalization of the Horn conjecture %J Journal of the American Mathematical Society %D 2008 %P 365-408 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00584-X/ %R 10.1090/S0894-0347-07-00584-X %F 10_1090_S0894_0347_07_00584_X
Belkale, Prakash. Quantum generalization of the Horn conjecture. Journal of the American Mathematical Society, Tome 21 (2008) no. 2, pp. 365-408. doi: 10.1090/S0894-0347-07-00584-X
[1] , Eigenvalues of products of unitary matrices and quantum Schubert calculus Math. Res. Lett. 1998 817 836
[2] Conformal blocks, fusion rules and the Verlinde formula 1996 75 96
[3] Local systems on â¹-ð for ð a finite set Compositio Math. 2001 67 86
[4] Transformation formulas in quantum cohomology Compos. Math. 2004 778 792
[5] Geometric proofs of Horn and saturation conjectures J. Algebraic Geom. 2006 133 173
[6] Quantum Schubert calculus Adv. Math. 1997 289 305
[7] A criterion for the existence of a parabolic stable bundle of rank two over the projective line Internat. J. Math. 1998 523 533
[8] Commutative algebra 1995
[9] , Notes on stable maps and quantum cohomology 1997 45 96
[10] , On the quantum product of Schubert classes J. Algebraic Geom. 2004 641 661
[11] Eigenvalues, invariant factors, highest weights, and Schubert calculus Bull. Amer. Math. Soc. (N.S.) 2000 209 249
[12] Eigenvalues of majorized Hermitian matrices and Littlewood-Richardson coefficients Linear Algebra Appl. 2000 23 36
[13] Fusion rings and geometry Comm. Math. Phys. 1991 381 411
[14] Algebraic geometry 1977
[15] Eigenvalues of sums of Hermitian matrices Pacific J. Math. 1962 225 241
[16] The transversality of a general translate Compositio Math. 1974 287 297
[17] Stable bundles, representation theory and Hermitian operators Selecta Math. (N.S.) 1998 419 445
[18] , The honeycomb model of ðºð¿_{ð}(ð¶) tensor products. I. Proof of the saturation conjecture J. Amer. Math. Soc. 1999 1055 1090
[19] Rational curves on algebraic varieties 1996
[20] , Gromov-Witten classes, quantum cohomology, and enumerative geometry [ MR1291244 (95i:14049)] 1997 607 653
[21] Lectures on vector bundles 1997
[22] Commutative ring theory 1989
[23] , Moduli of vector bundles on curves with parabolic structures Math. Ann. 1980 205 239
[24] Lectures on curves on an algebraic surface 1966
[25] Espaces de modules de fibrés paraboliques et blocs conformes Duke Math. J. 1996 217 235
[26] Affine approach to quantum Schubert calculus Duke Math. J. 2005 473 509
[27] Pieriâs formula via explicit rational equivalence Canad. J. Math. 1997 1281 1298
[28] Real rational curves in Grassmannians J. Amer. Math. Soc. 2000 333 341
[29] Elementary transversality in the Schubert calculus in any characteristic Michigan Math. J. 2003 651 666
[30] Schubert induction Ann. of Math. (2) 2006 489 512
[31] The Verlinde algebra and the cohomology of the Grassmannian 1995 357 422
[32] Degree bounds in quantum Schubert calculus Proc. Amer. Math. Soc. 2003 2649 2655
Cité par Sources :