Hausdorff dimension and conformal measures of Feigenbaum Julia sets
Journal of the American Mathematical Society, Tome 21 (2008) no. 2, pp. 305-363

Voir la notice de l'article provenant de la source American Mathematical Society

We show that contrary to anticipation suggested by the dictionary between rational maps and Kleinian groups and by the “hairiness phenomenon”, there exist many Feigenbaum Julia sets $J(f)$ whose Hausdorff dimension is strictly smaller than two. We also prove that for any Feigenbaum Julia set, the Poincaré critical exponent $\delta _{\mathrm {cr}}$ is equal to the hyperbolic dimension $\mathrm {HD}_{\mathrm {hyp}}(J(f))$. Moreover, if $\operatorname {area} J(f)=0$, then $\operatorname {HD}_{\mathrm {hyp}} (J(f))=\operatorname {HD}(J(f))$. In the stationary case, the last statement can be reversed: if $\operatorname {area} J(f)> 0$, then $\operatorname {HD}_{\mathrm {hyp}} (J(f)) 2$. We also give a new construction of conformal measures on $J(f)$ that implies that they exist for any $\delta \in [\delta _{\mathrm {cr}}, \infty )$, and analyze their scaling and dissipativity/conservativity properties.
DOI : 10.1090/S0894-0347-07-00583-8

Avila, Artur 1 ; Lyubich, Mikhail 2, 3

1 CNRS UMR 7599, Laboratoire de Probabilités et Modèles aléatoires, Université Pierre et Marie Curie–Boîte courrier 188, 75252–Paris Cedex 05, France
2 Department of Mathematics, University of Toronto, Ontario, Canada M5S 3G3
3 Mathematics Department and IMS, SUNY Stony Brook, Stony Brook, New York 11794
@article{10_1090_S0894_0347_07_00583_8,
     author = {Avila, Artur and Lyubich, Mikhail},
     title = {Hausdorff dimension and conformal measures of {Feigenbaum} {Julia} sets},
     journal = {Journal of the American Mathematical Society},
     pages = {305--363},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2008},
     doi = {10.1090/S0894-0347-07-00583-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00583-8/}
}
TY  - JOUR
AU  - Avila, Artur
AU  - Lyubich, Mikhail
TI  - Hausdorff dimension and conformal measures of Feigenbaum Julia sets
JO  - Journal of the American Mathematical Society
PY  - 2008
SP  - 305
EP  - 363
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00583-8/
DO  - 10.1090/S0894-0347-07-00583-8
ID  - 10_1090_S0894_0347_07_00583_8
ER  - 
%0 Journal Article
%A Avila, Artur
%A Lyubich, Mikhail
%T Hausdorff dimension and conformal measures of Feigenbaum Julia sets
%J Journal of the American Mathematical Society
%D 2008
%P 305-363
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00583-8/
%R 10.1090/S0894-0347-07-00583-8
%F 10_1090_S0894_0347_07_00583_8
Avila, Artur; Lyubich, Mikhail. Hausdorff dimension and conformal measures of Feigenbaum Julia sets. Journal of the American Mathematical Society, Tome 21 (2008) no. 2, pp. 305-363. doi: 10.1090/S0894-0347-07-00583-8

[1] Ahlfors, Lars V. Möbius transformations in several dimensions 1981

[2] Aaronson, Jon, Denker, Manfred, Urbaå„Ski, Mariusz Ergodic theory for Markov fibred systems and parabolic rational maps Trans. Amer. Math. Soc. 1993 495 548

[3] Barnes, Julia A. Conservative exact rational maps of the sphere J. Math. Anal. Appl. 1999 350 374

[4] Bishop, Christopher J. Minkowski dimension and the Poincaré exponent Michigan Math. J. 1996 231 246

[5] Bishop, Christopher J., Jones, Peter W. Hausdorff dimension and Kleinian groups Acta Math. 1997 1 39

[6] Blokh, A. M., Lyubich, M. Yu. Attractors of maps of the interval 1989 427 442

[7] Blokh, Alexander, Misiurewicz, Michaå‚ Attractors for graph critical rational maps Trans. Amer. Math. Soc. 2002 3639 3661

[8] Bowen, Rufus Hausdorff dimension of quasicircles Inst. Hautes Études Sci. Publ. Math. 1979 11 25

[9] Bruin, H., Keller, G., Nowicki, T., Van Strien, S. Wild Cantor attractors exist Ann. of Math. (2) 1996 97 130

[10] Buff, Xavier Fibonacci fixed point of renormalization Ergodic Theory Dynam. Systems 2000 1287 1317

[11] Calegari, Danny, Gabai, David Shrinkwrapping and the taming of hyperbolic 3-manifolds J. Amer. Math. Soc. 2006 385 446

[12] Carleson, Lennart, Jones, Peter W., Yoccoz, Jean-Christophe Julia and John Bol. Soc. Brasil. Mat. (N.S.) 1994 1 30

[13] Douady, Adrien, Hubbard, John Hamal On the dynamics of polynomial-like mappings Ann. Sci. École Norm. Sup. (4) 1985 287 343

[14] Denker, M., Urbaå„Ski, M. On Sullivan’s conformal measures for rational maps of the Riemann sphere Nonlinearity 1991 365 384

[15] Erã«Menko, A. È., Lyubich, M. Yu. Iterations of entire functions Dokl. Akad. Nauk SSSR 1984 25 27

[16] Erã«Menko, A. È., Ljubich, M. Ju. Examples of entire functions with pathological dynamics J. London Math. Soc. (2) 1987 458 468

[17] Jiang, Yunping Infinitely renormalizable quadratic polynomials Trans. Amer. Math. Soc. 2000 5077 5091

[18] Kaimanovich, Vadim A., Lyubich, Mikhail Conformal and harmonic measures on laminations associated with rational maps Mem. Amer. Math. Soc. 2005

[19] Karpiå„Ska, Boguslawa Hausdorff dimension of the hairs without endpoints for 𝜆exp𝑧 C. R. Acad. Sci. Paris Sér. I Math. 1999 1039 1044

[20] Keller, Gerhard, Nowicki, Tomasz Fibonacci maps re(al)visited Ergodic Theory Dynam. Systems 1995 99 120

[21] Levin, Genadi, ŚWiaì§Tek, Grzegorz Hausdorff dimension of Julia sets of Feigenbaum polynomials with high criticality Comm. Math. Phys. 2005 135 148

[22] Lyubich, M. Yu. Typical behavior of trajectories of the rational mapping of a sphere Dokl. Akad. Nauk SSSR 1983 29 32

[23] Lyubich, M. Yu. The measurable dynamics of the exponential Sibirsk. Mat. Zh. 1987 111 127

[24] Lyubich, Mikhail Combinatorics, geometry and attractors of quasi-quadratic maps Ann. of Math. (2) 1994 347 404

[25] Lyubich, Mikhail Dynamics of quadratic polynomials. I, II Acta Math. 1997

[26] Lyubich, Mikhail Dynamics of quadratic polynomials. III. Parapuzzle and SBR measures Astérisque 2000

[27] Lyubich, Mikhail How big is the set of infinitely renormalizable quadratics? 1998 131 143

[28] Lyubich, Mikhail Feigenbaum-Coullet-Tresser universality and Milnor’s hairiness conjecture Ann. of Math. (2) 1999 319 420

[29] Lyubich, Mikhail, Milnor, John The Fibonacci unimodal map J. Amer. Math. Soc. 1993 425 457

[30] Lyubich, Mikhail, Minsky, Yair Laminations in holomorphic dynamics J. Differential Geom. 1997 17 94

[31] Martens, Marco Distortion results and invariant Cantor sets of unimodal maps Ergodic Theory Dynam. Systems 1994 331 349

[32] Martens, Marco The periodic points of renormalization Ann. of Math. (2) 1998 543 584

[33] Mcmullen, Curt Area and Hausdorff dimension of Julia sets of entire functions Trans. Amer. Math. Soc. 1987 329 342

[34] Mcmullen, Curtis T. Complex dynamics and renormalization 1994

[35] Mcmullen, Curtis T. Renormalization and 3-manifolds which fiber over the circle 1996

[36] Mcmullen, Curtis T. Self-similarity of Siegel disks and Hausdorff dimension of Julia sets Acta Math. 1998 247 292

[37] Mcmullen, Curtis T. Hausdorff dimension and conformal dynamics. II. Geometrically finite rational maps Comment. Math. Helv. 2000 535 593

[38] Mattila, Pertti Geometry of sets and measures in Euclidean spaces 1995

[39] De Melo, Welington, Van Strien, Sebastian One-dimensional dynamics 1993

[40] Mayer, Volker, Urbaå„Ski, Mariusz Fractal measures for meromorphic functions of finite order Dyn. Syst. 2007 169 178

[41] Nicholls, Peter J. The ergodic theory of discrete groups 1989

[42] Patterson, S. J. The limit set of a Fuchsian group Acta Math. 1976 241 273

[43] Petersen, Carsten Lunde Local connectivity of some Julia sets containing a circle with an irrational rotation Acta Math. 1996 163 224

[44] Prado, Eduardo A. Ergodicity of conformal measures for unimodal polynomials Conform. Geom. Dyn. 1998 29 44

[45] Przytycki, Feliks Lyapunov characteristic exponents are nonnegative Proc. Amer. Math. Soc. 1993 309 317

[46] Przytycki, Feliks On measure and Hausdorff dimension of Julia sets of holomorphic Collet-Eckmann maps 1996 167 181

[47] Przytycki, Feliks, Rohde, Steffen Porosity of Collet-Eckmann Julia sets Fund. Math. 1998 189 199

[48] Rees, Mary The exponential map is not recurrent Math. Z. 1986 593 598

[49] Schleicher, Dierk, Zimmer, Johannes Escaping points of exponential maps J. London Math. Soc. (2) 2003 380 400

[50] Shen, Weixiao Decay of geometry for unimodal maps: an elementary proof Ann. of Math. (2) 2006 383 404

[51] Shishikura, Mitsuhiro The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets Ann. of Math. (2) 1998 225 267

[52] Shishikura, Mitsuhiro Topological, geometric and complex analytic properties of Julia sets 1995 886 895

[53] Sinaä­, Ja. G. Markov partitions and U-diffeomorphisms Funkcional. Anal. i Priložen. 1968 64 89

[54] Smania, Daniel Puzzle geometry and rigidity: the Fibonacci cycle is hyperbolic J. Amer. Math. Soc. 2007 629 673

[55] Sullivan, Dennis The density at infinity of a discrete group of hyperbolic motions Inst. Hautes Études Sci. Publ. Math. 1979 171 202

[56] Sullivan, Dennis Growth of positive harmonic functions and Kleinian group limit sets of zero planar measure and Hausdorff dimension two 1981 127 144

[57] Sullivan, Dennis Conformal dynamical systems 1983 725 752

[58] Sullivan, Dennis Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups Acta Math. 1984 259 277

[59] Sullivan, Dennis Bounds, quadratic differentials, and renormalization conjectures 1992 417 466

[60] Tukia, Pekka The Hausdorff dimension of the limit set of a geometrically finite Kleinian group Acta Math. 1984 127 140

[61] Urbaå„Ski, Mariusz Rational functions with no recurrent critical points Ergodic Theory Dynam. Systems 1994 391 414

[62] Urbaå„Ski, Mariusz Geometry and ergodic theory of conformal non-recurrent dynamics Ergodic Theory Dynam. Systems 1997 1449 1476

[63] Urbaå„Ski, Mariusz, Zdunik, Anna The finer geometry and dynamics of the hyperbolic exponential family Michigan Math. J. 2003 227 250

[64] Zdunik, Anna Parabolic orbifolds and the dimension of the maximal measure for rational maps Invent. Math. 1990 627 649

Cité par Sources :