Voir la notice de l'article provenant de la source American Mathematical Society
Avila, Artur 1 ; Lyubich, Mikhail 2, 3
@article{10_1090_S0894_0347_07_00583_8,
author = {Avila, Artur and Lyubich, Mikhail},
title = {Hausdorff dimension and conformal measures of {Feigenbaum} {Julia} sets},
journal = {Journal of the American Mathematical Society},
pages = {305--363},
publisher = {mathdoc},
volume = {21},
number = {2},
year = {2008},
doi = {10.1090/S0894-0347-07-00583-8},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00583-8/}
}
TY - JOUR AU - Avila, Artur AU - Lyubich, Mikhail TI - Hausdorff dimension and conformal measures of Feigenbaum Julia sets JO - Journal of the American Mathematical Society PY - 2008 SP - 305 EP - 363 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00583-8/ DO - 10.1090/S0894-0347-07-00583-8 ID - 10_1090_S0894_0347_07_00583_8 ER -
%0 Journal Article %A Avila, Artur %A Lyubich, Mikhail %T Hausdorff dimension and conformal measures of Feigenbaum Julia sets %J Journal of the American Mathematical Society %D 2008 %P 305-363 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00583-8/ %R 10.1090/S0894-0347-07-00583-8 %F 10_1090_S0894_0347_07_00583_8
Avila, Artur; Lyubich, Mikhail. Hausdorff dimension and conformal measures of Feigenbaum Julia sets. Journal of the American Mathematical Society, Tome 21 (2008) no. 2, pp. 305-363. doi: 10.1090/S0894-0347-07-00583-8
[1] Möbius transformations in several dimensions 1981
[2] , , Ergodic theory for Markov fibred systems and parabolic rational maps Trans. Amer. Math. Soc. 1993 495 548
[3] Conservative exact rational maps of the sphere J. Math. Anal. Appl. 1999 350 374
[4] Minkowski dimension and the Poincaré exponent Michigan Math. J. 1996 231 246
[5] , Hausdorff dimension and Kleinian groups Acta Math. 1997 1 39
[6] , Attractors of maps of the interval 1989 427 442
[7] , Attractors for graph critical rational maps Trans. Amer. Math. Soc. 2002 3639 3661
[8] Hausdorff dimension of quasicircles Inst. Hautes Ãtudes Sci. Publ. Math. 1979 11 25
[9] , , , Wild Cantor attractors exist Ann. of Math. (2) 1996 97 130
[10] Fibonacci fixed point of renormalization Ergodic Theory Dynam. Systems 2000 1287 1317
[11] , Shrinkwrapping and the taming of hyperbolic 3-manifolds J. Amer. Math. Soc. 2006 385 446
[12] , , Julia and John Bol. Soc. Brasil. Mat. (N.S.) 1994 1 30
[13] , On the dynamics of polynomial-like mappings Ann. Sci. Ãcole Norm. Sup. (4) 1985 287 343
[14] , On Sullivanâs conformal measures for rational maps of the Riemann sphere Nonlinearity 1991 365 384
[15] , Iterations of entire functions Dokl. Akad. Nauk SSSR 1984 25 27
[16] , Examples of entire functions with pathological dynamics J. London Math. Soc. (2) 1987 458 468
[17] Infinitely renormalizable quadratic polynomials Trans. Amer. Math. Soc. 2000 5077 5091
[18] , Conformal and harmonic measures on laminations associated with rational maps Mem. Amer. Math. Soc. 2005
[19] Hausdorff dimension of the hairs without endpoints for ðexpð§ C. R. Acad. Sci. Paris Sér. I Math. 1999 1039 1044
[20] , Fibonacci maps re(al)visited Ergodic Theory Dynam. Systems 1995 99 120
[21] , Hausdorff dimension of Julia sets of Feigenbaum polynomials with high criticality Comm. Math. Phys. 2005 135 148
[22] Typical behavior of trajectories of the rational mapping of a sphere Dokl. Akad. Nauk SSSR 1983 29 32
[23] The measurable dynamics of the exponential Sibirsk. Mat. Zh. 1987 111 127
[24] Combinatorics, geometry and attractors of quasi-quadratic maps Ann. of Math. (2) 1994 347 404
[25] Dynamics of quadratic polynomials. I, II Acta Math. 1997
[26] Dynamics of quadratic polynomials. III. Parapuzzle and SBR measures Astérisque 2000
[27] How big is the set of infinitely renormalizable quadratics? 1998 131 143
[28] Feigenbaum-Coullet-Tresser universality and Milnorâs hairiness conjecture Ann. of Math. (2) 1999 319 420
[29] , The Fibonacci unimodal map J. Amer. Math. Soc. 1993 425 457
[30] , Laminations in holomorphic dynamics J. Differential Geom. 1997 17 94
[31] Distortion results and invariant Cantor sets of unimodal maps Ergodic Theory Dynam. Systems 1994 331 349
[32] The periodic points of renormalization Ann. of Math. (2) 1998 543 584
[33] Area and Hausdorff dimension of Julia sets of entire functions Trans. Amer. Math. Soc. 1987 329 342
[34] Complex dynamics and renormalization 1994
[35] Renormalization and 3-manifolds which fiber over the circle 1996
[36] Self-similarity of Siegel disks and Hausdorff dimension of Julia sets Acta Math. 1998 247 292
[37] Hausdorff dimension and conformal dynamics. II. Geometrically finite rational maps Comment. Math. Helv. 2000 535 593
[38] Geometry of sets and measures in Euclidean spaces 1995
[39] , One-dimensional dynamics 1993
[40] , Fractal measures for meromorphic functions of finite order Dyn. Syst. 2007 169 178
[41] The ergodic theory of discrete groups 1989
[42] The limit set of a Fuchsian group Acta Math. 1976 241 273
[43] Local connectivity of some Julia sets containing a circle with an irrational rotation Acta Math. 1996 163 224
[44] Ergodicity of conformal measures for unimodal polynomials Conform. Geom. Dyn. 1998 29 44
[45] Lyapunov characteristic exponents are nonnegative Proc. Amer. Math. Soc. 1993 309 317
[46] On measure and Hausdorff dimension of Julia sets of holomorphic Collet-Eckmann maps 1996 167 181
[47] , Porosity of Collet-Eckmann Julia sets Fund. Math. 1998 189 199
[48] The exponential map is not recurrent Math. Z. 1986 593 598
[49] , Escaping points of exponential maps J. London Math. Soc. (2) 2003 380 400
[50] Decay of geometry for unimodal maps: an elementary proof Ann. of Math. (2) 2006 383 404
[51] The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets Ann. of Math. (2) 1998 225 267
[52] Topological, geometric and complex analytic properties of Julia sets 1995 886 895
[53] Markov partitions and U-diffeomorphisms Funkcional. Anal. i Priložen. 1968 64 89
[54] Puzzle geometry and rigidity: the Fibonacci cycle is hyperbolic J. Amer. Math. Soc. 2007 629 673
[55] The density at infinity of a discrete group of hyperbolic motions Inst. Hautes Ãtudes Sci. Publ. Math. 1979 171 202
[56] Growth of positive harmonic functions and Kleinian group limit sets of zero planar measure and Hausdorff dimension two 1981 127 144
[57] Conformal dynamical systems 1983 725 752
[58] Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups Acta Math. 1984 259 277
[59] Bounds, quadratic differentials, and renormalization conjectures 1992 417 466
[60] The Hausdorff dimension of the limit set of a geometrically finite Kleinian group Acta Math. 1984 127 140
[61] Rational functions with no recurrent critical points Ergodic Theory Dynam. Systems 1994 391 414
[62] Geometry and ergodic theory of conformal non-recurrent dynamics Ergodic Theory Dynam. Systems 1997 1449 1476
[63] , The finer geometry and dynamics of the hyperbolic exponential family Michigan Math. J. 2003 227 250
[64] Parabolic orbifolds and the dimension of the maximal measure for rational maps Invent. Math. 1990 627 649
Cité par Sources :