Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators
Journal of the American Mathematical Society, Tome 21 (2008) no. 4, pp. 925-950

Voir la notice de l'article provenant de la source American Mathematical Society

We show that the Lieb-Thirring inequalities on moments of negative eigenvalues of Schrödinger-like operators remain true, with possibly different constants, when the critical Hardy-weight $C |x|^{-2}$ is subtracted from the Laplace operator. We do so by first establishing a Sobolev inequality for such operators. Similar results are true for fractional powers of the Laplacian and the Hardy-weight and, in particular, for relativistic Schrödinger operators. We also allow for the inclusion of magnetic vector potentials. As an application, we extend, for the first time, the proof of stability of relativistic matter with magnetic fields all the way up to the critical value of the nuclear charge $Z\alpha =2/\pi$, for $\alpha$ less than some critical value.
DOI : 10.1090/S0894-0347-07-00582-6

Frank, Rupert 1, 2 ; Lieb, Elliott 3 ; Seiringer, Robert 4

1 Department of Mathematics, Royal Institute of Technology, 100 44 Stockholm, Sweden
2 Department of Mathematics, Princeton University, Princeton, New Jersey 08544
3 Departments of Mathematics and Physics, Princeton University, P. O. Box 708, Princeton, New Jersey 08544
4 Department of Physics, Princeton University, P. O. Box 708, Princeton, New Jersey 08544
@article{10_1090_S0894_0347_07_00582_6,
     author = {Frank, Rupert and Lieb, Elliott and Seiringer, Robert},
     title = {Hardy-Lieb-Thirring inequalities for fractional {Schr\~A{\textparagraph}dinger} operators},
     journal = {Journal of the American Mathematical Society},
     pages = {925--950},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2008},
     doi = {10.1090/S0894-0347-07-00582-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00582-6/}
}
TY  - JOUR
AU  - Frank, Rupert
AU  - Lieb, Elliott
AU  - Seiringer, Robert
TI  - Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators
JO  - Journal of the American Mathematical Society
PY  - 2008
SP  - 925
EP  - 950
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00582-6/
DO  - 10.1090/S0894-0347-07-00582-6
ID  - 10_1090_S0894_0347_07_00582_6
ER  - 
%0 Journal Article
%A Frank, Rupert
%A Lieb, Elliott
%A Seiringer, Robert
%T Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators
%J Journal of the American Mathematical Society
%D 2008
%P 925-950
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00582-6/
%R 10.1090/S0894-0347-07-00582-6
%F 10_1090_S0894_0347_07_00582_6
Frank, Rupert; Lieb, Elliott; Seiringer, Robert. Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators. Journal of the American Mathematical Society, Tome 21 (2008) no. 4, pp. 925-950. doi: 10.1090/S0894-0347-07-00582-6

[1] Handbook of mathematical functions with formulas, graphs, and mathematical tables 1992

[2] Beckner, William Pitt’s inequality and the uncertainty principle Proc. Amer. Math. Soc. 1995 1897 1905

[3] Brezis, Haã¯M, Lieb, Elliott H. Sobolev inequalities with remainder terms J. Funct. Anal. 1985 73 86

[4] Brezis, Haim, Vã¡Zquez, Juan Luis Blow-up solutions of some nonlinear elliptic problems Rev. Mat. Univ. Complut. Madrid 1997 443 469

[5] Daubechies, Ingrid An uncertainty principle for fermions with generalized kinetic energy Comm. Math. Phys. 1983 511 520

[6] Davies, E. B. Heat kernels and spectral theory 1990

[7] Donoghue, William F., Jr. Monotone matrix functions and analytic continuation 1974

[8] Ekholm, T., Frank, R. L. On Lieb-Thirring inequalities for Schrödinger operators with virtual level Comm. Math. Phys. 2006 725 740

[9] Herbst, Ira W. Spectral theory of the operator (𝑝²+𝑚²)^{1/2}-𝑍𝑒²/𝑟 Comm. Math. Phys. 1977 285 294

[10] Lieb, Elliott H. The number of bound states of one-body Schroedinger operators and the Weyl problem 1980 241 252

[11] Lieb, Elliott H. Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities Ann. of Math. (2) 1983 349 374

[12] Lieb, Elliott H. The stability of matter: from atoms to stars Bull. Amer. Math. Soc. (N.S.) 1990 1 49

[13] Lieb, Elliott H. The stability of matter and quantum electrodynamics 2004 53 68

[14] Lieb, Elliott H., Loss, Michael Analysis 2001

[15] Lieb, Elliott H., Yau, Horng-Tzer The stability and instability of relativistic matter Comm. Math. Phys. 1988 177 213

[16] Reed, Michael, Simon, Barry Methods of modern mathematical physics. I 1980

[17] Reed, Michael, Simon, Barry Methods of modern mathematical physics. I. Functional analysis 1972

[18] Rozenblyum, G., Solomyak, M. The Cwikel-Lieb-Rozenblyum estimator for generators of positive semigroups and semigroups dominated by positive semigroups Algebra i Analiz 1997 214 236

[19] Simon, Barry Maximal and minimal Schrödinger forms J. Operator Theory 1979 37 47

[20] Simon, Barry Functional integration and quantum physics 2005

[21] Yafaev, D. Sharp constants in the Hardy-Rellich inequalities J. Funct. Anal. 1999 121 144

Cité par Sources :