@article{10_1090_S0894_0347_07_00578_4,
author = {Popa, Sorin},
title = {On the superrigidity of malleable actions with spectral gap},
journal = {Journal of the American Mathematical Society},
pages = {981--1000},
year = {2008},
volume = {21},
number = {4},
doi = {10.1090/S0894-0347-07-00578-4},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00578-4/}
}
TY - JOUR AU - Popa, Sorin TI - On the superrigidity of malleable actions with spectral gap JO - Journal of the American Mathematical Society PY - 2008 SP - 981 EP - 1000 VL - 21 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00578-4/ DO - 10.1090/S0894-0347-07-00578-4 ID - 10_1090_S0894_0347_07_00578_4 ER -
%0 Journal Article %A Popa, Sorin %T On the superrigidity of malleable actions with spectral gap %J Journal of the American Mathematical Society %D 2008 %P 981-1000 %V 21 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00578-4/ %R 10.1090/S0894-0347-07-00578-4 %F 10_1090_S0894_0347_07_00578_4
Popa, Sorin. On the superrigidity of malleable actions with spectral gap. Journal of the American Mathematical Society, Tome 21 (2008) no. 4, pp. 981-1000. doi: 10.1090/S0894-0347-07-00578-4
[1] , Factor and normal subgroup theorems for lattices in products of groups Invent. Math. 2006 415 454
[2] , , , , Groups with the Haagerup property 2001
[3] Subalgebras of a finite algebra Math. Ann. 1979 17 29
[4] Classification of injective factors. Cases 𝐼𝐼₁, 𝐼𝐼_{∞}, 𝐼𝐼𝐼_{𝜆}, 𝜆̸ Ann. of Math. (2) 1976 73 115
[5] Sur la classification des facteurs de type 𝐼𝐼 C. R. Acad. Sci. Paris Sér. A-B 1975
[6] A factor of type 𝐼𝐼₁ with countable fundamental group J. Operator Theory 1980 151 153
[7] Classification des facteurs 1982 43 109
[8] , , An amenable equivalence relation is generated by a single transformation Ergodic Theory Dynam. Systems 1981
[9] , A 𝐼𝐼₁ factor with two nonconjugate Cartan subalgebras Bull. Amer. Math. Soc. (N.S.) 1982 211 212
[10] , Property 𝑇 for von Neumann algebras Bull. London Math. Soc. 1985 57 62
[11] Asymptotically invariant sequences and an action of 𝑆𝐿(2,𝑍) on the 2-sphere Israel J. Math. 1980 193 208
[12] On groups of measure preserving transformations. II Amer. J. Math. 1963 551 576
[13] , Ergodic equivalence relations, cohomology, and von Neumann algebras. I Trans. Amer. Math. Soc. 1977 289 324
[14] Orbit equivalence rigidity Ann. of Math. (2) 1999 1083 1108
[15] Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions J. Analyse Math. 1977 204 256
[16] Coût des relations d’équivalence et des groupes Invent. Math. 2000 41 98
[17] Invariants 𝑙² de relations d’équivalence et de groupes Publ. Math. Inst. Hautes Études Sci. 2002 93 150
[18] , An uncountable family of nonorbit equivalent actions of 𝔽_{𝕟} J. Amer. Math. Soc. 2005 547 559
[19] An example of a nonnuclear 𝐶*-algebra, which has the metric approximation property Invent. Math. 1978/79 279 293
[20] A converse to Dye’s theorem Trans. Amer. Math. Soc. 2005 3083 3103
[21] , Rigidity theorems for actions of product groups and countable Borel equivalence relations Mem. Amer. Math. Soc. 2005
[22] On the connection of the dual space of a group with the structure of its closed subgroups Funkcional. Anal. i Priložen. 1967 71 74
[23] Central sequences and the hyperfinite factor Proc. London Math. Soc. (3) 1970 443 461
[24] Superrigidity for irreducible lattices and geometric splitting J. Amer. Math. Soc. 2006 781 814
[25] , Orbit equivalence rigidity and bounded cohomology Ann. of Math. (2) 2006 825 878
[26] , On rings of operators Ann. of Math. (2) 1936 116 229
[27] , On rings of operators. IV Ann. of Math. (2) 1943 716 808
[28] , Ergodic theory of amenable group actions. I. The Rohlin lemma Bull. Amer. Math. Soc. (N.S.) 1980 161 164
[29] Solid von Neumann algebras Acta Math. 2004 111 117
[30] A Kurosh-type theorem for type 𝐼𝐼₁ factors Int. Math. Res. Not. 2006
[31] , Some prime factorization results for type 𝐼𝐼₁ factors Invent. Math. 2004 223 234
[32] Some computations of 1-cohomology groups and construction of non-orbit-equivalent actions J. Inst. Math. Jussieu 2006 309 332
[33] Some rigidity results for non-commutative Bernoulli shifts J. Funct. Anal. 2006 273 328
[34] Strong rigidity of 𝐼𝐼₁ factors arising from malleable actions of 𝑤-rigid groups. I Invent. Math. 2006 369 408
[35] Strong rigidity of 𝐼𝐼₁ factors arising from malleable actions of 𝑤-rigid groups. II Invent. Math. 2006 409 451
[36] On a class of type 𝐼𝐼₁ factors with Betti numbers invariants Ann. of Math. (2) 2006 809 899
[37] , On the cohomology of Bernoulli actions Ergodic Theory Dynam. Systems 2007 241 251
[38] , Free states of the canonical anticommutation relations Comm. Math. Phys. 1970 1 33
[39] Asymptotically invariant sequences and an action of 𝑆𝐿(2,𝑍) on the 2-sphere Israel J. Math. 1980 193 208
[40] Measurable group theory 2005 391 423
[41] Automorphisms of finite factors Amer. J. Math. 1955 117 133
[42] Strong rigidity for ergodic actions of semisimple Lie groups Ann. of Math. (2) 1980 511 529
[43] Ergodic theory and semisimple groups 1984
[44] Extensions of ergodic group actions Illinois J. Math. 1976 373 409
Cité par Sources :