Symplectic 𝐒¹×𝐍³, subgroup separability, and vanishing Thurston norm
Journal of the American Mathematical Society, Tome 21 (2008) no. 2, pp. 597-610

Voir la notice de l'article provenant de la source American Mathematical Society

Let $N$ be a closed, oriented $3$–manifold. A folklore conjecture states that $S^{1} \times N$ admits a symplectic structure if and only if $N$ admits a fibration over the circle. We will prove this conjecture in the case when $N$ is irreducible and its fundamental group satisfies appropriate subgroup separability conditions. This statement includes $3$–manifolds with vanishing Thurston norm, graph manifolds and $3$–manifolds with surface subgroup separability (a condition satisfied conjecturally by all hyperbolic $3$–manifolds). Our result covers, in particular, the case of $0$–framed surgeries along knots of genus one. The statement follows from the proof that twisted Alexander polynomials decide fiberability for all the $3$–manifolds listed above. As a corollary, it follows that twisted Alexander polynomials decide if a knot of genus one is fibered.
DOI : 10.1090/S0894-0347-07-00577-2

Friedl, Stefan 1 ; Vidussi, Stefano 2

1 Département de Mathématiques, Université du Québec à Montréal, Montréal, Québec, H3C 3P8, Canada
2 Department of Mathematics, University of California, Riverside, California 92521
@article{10_1090_S0894_0347_07_00577_2,
     author = {Friedl, Stefan and Vidussi, Stefano},
     title = {Symplectic {{\dh}’\^A{\textonesuperior}\~A—{\dh}\^A{\textthreesuperior},} subgroup separability, and vanishing {Thurston} norm},
     journal = {Journal of the American Mathematical Society},
     pages = {597--610},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2008},
     doi = {10.1090/S0894-0347-07-00577-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00577-2/}
}
TY  - JOUR
AU  - Friedl, Stefan
AU  - Vidussi, Stefano
TI  - Symplectic 𝐒¹×𝐍³, subgroup separability, and vanishing Thurston norm
JO  - Journal of the American Mathematical Society
PY  - 2008
SP  - 597
EP  - 610
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00577-2/
DO  - 10.1090/S0894-0347-07-00577-2
ID  - 10_1090_S0894_0347_07_00577_2
ER  - 
%0 Journal Article
%A Friedl, Stefan
%A Vidussi, Stefano
%T Symplectic 𝐒¹×𝐍³, subgroup separability, and vanishing Thurston norm
%J Journal of the American Mathematical Society
%D 2008
%P 597-610
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00577-2/
%R 10.1090/S0894-0347-07-00577-2
%F 10_1090_S0894_0347_07_00577_2
Friedl, Stefan; Vidussi, Stefano. Symplectic 𝐒¹×𝐍³, subgroup separability, and vanishing Thurston norm. Journal of the American Mathematical Society, Tome 21 (2008) no. 2, pp. 597-610. doi: 10.1090/S0894-0347-07-00577-2

[1] Adams, Colin, Schoenfeld, Eric Totally geodesic Seifert surfaces in hyperbolic knot and link complements. I Geom. Dedicata 2005 237 247

[2] Bonahon, Francis Geometric structures on 3-manifolds 2002 93 164

[3] Burde, Gerhard, Zieschang, Heiner Neuwirthsche Knoten und Flächenabbildungen Abh. Math. Sem. Univ. Hamburg 1967 239 246

[4] Burns, R. G., Karrass, A., Solitar, D. A note on groups with separable finitely generated subgroups Bull. Austral. Math. Soc. 1987 153 160

[5] Eisenbud, David, Neumann, Walter Three-dimensional link theory and invariants of plane curve singularities 1985

[6] Friedl, Stefan, Kim, Taehee The Thurston norm, fibered manifolds and twisted Alexander polynomials Topology 2006 929 953

[7] Gabai, David Foliations and the topology of 3-manifolds J. Differential Geom. 1983 445 503

[8] Gabai, David Foliations and the topology of 3-manifolds. II J. Differential Geom. 1987 461 478

[9] Gitik, Rita Doubles of groups and hyperbolic LERF 3-manifolds Ann. of Math. (2) 1999 775 806

[10] Hamilton, Emily Abelian subgroup separability of Haken 3-manifolds and closed hyperbolic 𝑛-orbifolds Proc. London Math. Soc. (3) 2001 626 646

[11] Hempel, John 3-Manifolds 1976

[12] Hempel, John Residual finiteness for 3-manifolds 1987 379 396

[13] Kojima, Sadayoshi Finite covers of 3-manifolds containing essential surfaces of Euler characteristic Proc. Amer. Math. Soc. 1987 743 747

[14] Kronheimer, P. B. Embedded surfaces and gauge theory in three and four dimensions 1998 243 298

[15] Kronheimer, P. B. Minimal genus in 𝑆¹×𝑀³ Invent. Math. 1999 45 61

[16] Jaco, William Lectures on three-manifold topology 1980

[17] Lin, Xiao Song Representations of knot groups and twisted Alexander polynomials Acta Math. Sin. (Engl. Ser.) 2001 361 380

[18] Long, D. D., Niblo, G. A. Subgroup separability and 3-manifold groups Math. Z. 1991 209 215

[19] Long, Darren, Reid, Alan W. Surface subgroups and subgroup separability in 3-manifold topology 2005 53

[20] Luecke, John Finite covers of 3-manifolds containing essential tori Trans. Amer. Math. Soc. 1988 381 391

[21] Mccarthy, John D. On the asphericity of a symplectic 𝑀³×𝑆¹ Proc. Amer. Math. Soc. 2001 257 264

[22] Mcmullen, Curtis T. The Alexander polynomial of a 3-manifold and the Thurston norm on cohomology Ann. Sci. École Norm. Sup. (4) 2002 153 171

[23] Meng, Guowu, Taubes, Clifford Henry \underline{𝑆𝑊} Math. Res. Lett. 1996 661 674

[24] Niblo, Graham A., Wise, Daniel T. Subgroup separability, knot groups and graph manifolds Proc. Amer. Math. Soc. 2001 685 693

[25] Scott, Peter Subgroups of surface groups are almost geometric J. London Math. Soc. (2) 1978 555 565

[26] Stallings, John On fibering certain 3-manifolds 1961 95 100

[27] Taubes, Clifford Henry The Seiberg-Witten invariants and symplectic forms Math. Res. Lett. 1994 809 822

[28] Taubes, Clifford Henry More constraints on symplectic forms from Seiberg-Witten invariants Math. Res. Lett. 1995 9 13

[29] Thurston, W. P. Some simple examples of symplectic manifolds Proc. Amer. Math. Soc. 1976 467 468

[30] Thurston, William P. Three-dimensional manifolds, Kleinian groups and hyperbolic geometry Bull. Amer. Math. Soc. (N.S.) 1982 357 381

[31] Thurston, William P. A norm for the homology of 3-manifolds Mem. Amer. Math. Soc. 1986

[32] Turaev, Vladimir Introduction to combinatorial torsions 2001

[33] Vidussi, Stefano Norms on the cohomology of a 3-manifold and SW theory Pacific J. Math. 2003 169 186

Cité par Sources :