Potentially semi-stable deformation rings
Journal of the American Mathematical Society, Tome 21 (2008) no. 2, pp. 513-546

Voir la notice de l'article provenant de la source American Mathematical Society

Let $K/\mathbb {Q}_p$ be a finite extension and $G_K$ the absolute Galois group of $K$. For $(A^{\circ }, \mathfrak {m})$ a complete local ring with finite residue and $V_{A^{\circ }}$ a finite free $A^{\circ }$-module equipped with an action of $G_K$ , we show that $A^{\circ }[1/p]$ has a maximal quotient over which the representation $V_{A^{\circ }}$ is semi-stable with Hodge-Tate weights in a given range. We show an analogous result for representations which are potentially semi-stable of fixed Galois type and $p$-adic Hodge type. If $V_{A^{\circ }}$ is the universal deformation of $V_{A^{\circ }}\otimes _{A^{\circ }} A^{\circ }/\mathfrak {m}$, then we compute the dimension of $A^{\circ }[1/p]$ and we show that these rings are sometimes smooth. Finally we apply this theory to show, in some new cases, the compatibility of the $p$-adic Galois representation attached to a Hilbert modular form with the local Langlands correspondence at $p$.
DOI : 10.1090/S0894-0347-07-00576-0

Kisin, Mark 1

1 Department of Mathematics, University of Chicago, Chicago, Illinois 60637
@article{10_1090_S0894_0347_07_00576_0,
     author = {Kisin, Mark},
     title = {Potentially semi-stable deformation rings},
     journal = {Journal of the American Mathematical Society},
     pages = {513--546},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2008},
     doi = {10.1090/S0894-0347-07-00576-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00576-0/}
}
TY  - JOUR
AU  - Kisin, Mark
TI  - Potentially semi-stable deformation rings
JO  - Journal of the American Mathematical Society
PY  - 2008
SP  - 513
EP  - 546
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00576-0/
DO  - 10.1090/S0894-0347-07-00576-0
ID  - 10_1090_S0894_0347_07_00576_0
ER  - 
%0 Journal Article
%A Kisin, Mark
%T Potentially semi-stable deformation rings
%J Journal of the American Mathematical Society
%D 2008
%P 513-546
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00576-0/
%R 10.1090/S0894-0347-07-00576-0
%F 10_1090_S0894_0347_07_00576_0
Kisin, Mark. Potentially semi-stable deformation rings. Journal of the American Mathematical Society, Tome 21 (2008) no. 2, pp. 513-546. doi: 10.1090/S0894-0347-07-00576-0

[1] Breuil, Christophe, Conrad, Brian, Diamond, Fred, Taylor, Richard On the modularity of elliptic curves over 𝐐: wild 3-adic exercises J. Amer. Math. Soc. 2001 843 939

[2] Berger, Laurent Limites de représentations cristallines Compos. Math. 2004 1473 1498

[3] Beauville, Arnaud, Laszlo, Yves Un lemme de descente C. R. Acad. Sci. Paris Sér. I Math. 1995 335 340

[4] Breuil, Christophe, Mã©Zard, Ariane Multiplicités modulaires et représentations de 𝐺𝐿₂(𝑍_{𝑝}) et de 𝐺𝑎𝑙(\overline{𝑄}_{𝑝}/𝑄_{𝑝}) en 𝑙 Duke Math. J. 2002 205 310

[5] Blasius, Don, Rogawski, Jonathan D. Motives for Hilbert modular forms Invent. Math. 1993 55 87

[6] Breuil, Christophe Une remarque sur les représentations locales 𝑝-adiques et les congruences entre formes modulaires de Hilbert Bull. Soc. Math. France 1999 459 472

[7] Carayol, Henri Sur les représentations 𝑙-adiques associées aux formes modulaires de Hilbert Ann. Sci. École Norm. Sup. (4) 1986 409 468

[8] Dee, Jonathan Φ-Γ modules for families of Galois representations J. Algebra 2001 636 664

[9] De Jong, A. J. Crystalline Dieudonné module theory via formal and rigid geometry Inst. Hautes Études Sci. Publ. Math. 1995

[10] Faltings, Gerd Algebraic loop groups and moduli spaces of bundles J. Eur. Math. Soc. (JEMS) 2003 41 68

[11] Faltings, Gerd Integral crystalline cohomology over very ramified valuation rings J. Amer. Math. Soc. 1999 117 144

[12] Fontaine, Jean-Marc, Mazur, Barry Geometric Galois representations 1995 41 78

[13] Fontaine, Jean-Marc Représentations 𝑝-adiques des corps locaux. I 1990 249 309

[14] Fontaine, Jean-Marc Représentations 𝑝-adiques semi-stables Astérisque 1994 113 184

[15] Fontaine, Jean-Marc Deforming semistable Galois representations Proc. Nat. Acad. Sci. U.S.A. 1997 11138 11141

[16] Fontaine, Jean-Marc, Perrin-Riou, Bernadette Autour des conjectures de Bloch et Kato: cohomologie galoisienne et valeurs de fonctions 𝐿 1994 599 706

[17] Kisin, Mark Crystalline representations and 𝐹-crystals 2006 459 496

[18] Mazur, B. Deforming Galois representations 1989 385 437

[19] Ramakrishna, Ravi On a variation of Mazur’s deformation functor Compositio Math. 1993 269 286

[20] Saito, Takeshi Modular forms and 𝑝-adic Hodge theory Invent. Math. 1997 607 620

[21] Taylor, Richard On Galois representations associated to Hilbert modular forms Invent. Math. 1989 265 280

[22] Taylor, Richard On Galois representations associated to Hilbert modular forms. II 1995 185 191

[23] Taylor, Richard Galois representations associated to Siegel modular forms of low weight Duke Math. J. 1991 281 332

[24] Wiles, Andrew Modular elliptic curves and Fermat’s last theorem Ann. of Math. (2) 1995 443 551

Cité par Sources :