Blow-up phenomena for the Yamabe equation
Journal of the American Mathematical Society, Tome 21 (2008) no. 4, pp. 951-979

Voir la notice de l'article provenant de la source American Mathematical Society

Let $(M,g)$ be a compact Riemannian manifold of dimension $n \geq 3$. A well-known conjecture states that the set of constant scalar curvature metrics in the conformal class of $g$ is compact unless $(M,g)$ is conformally equivalent to the round sphere. In this paper, we construct counterexamples to this conjecture in dimensions $n \geq 52$.
DOI : 10.1090/S0894-0347-07-00575-9

Brendle, Simon 1

1 Department of Mathematics, Stanford University, Stanford, California 94305
@article{10_1090_S0894_0347_07_00575_9,
     author = {Brendle, Simon},
     title = {Blow-up phenomena for the {Yamabe} equation},
     journal = {Journal of the American Mathematical Society},
     pages = {951--979},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2008},
     doi = {10.1090/S0894-0347-07-00575-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00575-9/}
}
TY  - JOUR
AU  - Brendle, Simon
TI  - Blow-up phenomena for the Yamabe equation
JO  - Journal of the American Mathematical Society
PY  - 2008
SP  - 951
EP  - 979
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00575-9/
DO  - 10.1090/S0894-0347-07-00575-9
ID  - 10_1090_S0894_0347_07_00575_9
ER  - 
%0 Journal Article
%A Brendle, Simon
%T Blow-up phenomena for the Yamabe equation
%J Journal of the American Mathematical Society
%D 2008
%P 951-979
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00575-9/
%R 10.1090/S0894-0347-07-00575-9
%F 10_1090_S0894_0347_07_00575_9
Brendle, Simon. Blow-up phenomena for the Yamabe equation. Journal of the American Mathematical Society, Tome 21 (2008) no. 4, pp. 951-979. doi: 10.1090/S0894-0347-07-00575-9

[1] Ambrosetti, Antonio Multiplicity results for the Yamabe problem on 𝑆ⁿ Proc. Natl. Acad. Sci. USA 2002 15252 15256

[2] Ambrosetti, Antonio, Malchiodi, Andrea A multiplicity result for the Yamabe problem on 𝑆ⁿ J. Funct. Anal. 1999 529 561

[3] Aubin, Thierry Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire J. Math. Pures Appl. (9) 1976 269 296

[4] Aubin, Thierry Sur quelques problèmes de courbure scalaire J. Funct. Anal. 2006 269 289

[5] Aubin, Thierry Solution complète de la 𝐶⁰ compacité de l’ensemble des solutions de l’équation de Yamabe J. Funct. Anal. 2007 579 589

[6] Berti, Massimiliano, Malchiodi, Andrea Non-compactness and multiplicity results for the Yamabe problem on 𝑆ⁿ J. Funct. Anal. 2001 210 241

[7] Druet, Olivier Compactness for Yamabe metrics in low dimensions Int. Math. Res. Not. 2004 1143 1191

[8] Druet, Olivier, Hebey, Emmanuel Blow-up examples for second order elliptic PDEs of critical Sobolev growth Trans. Amer. Math. Soc. 2005 1915 1929

[9] Druet, Olivier, Hebey, Emmanuel Elliptic equations of Yamabe type IMRS Int. Math. Res. Surv. 2005 1 113

[10] Li, Yan Yan, Zhang, Lei Compactness of solutions to the Yamabe problem. II Calc. Var. Partial Differential Equations 2005 185 237

[11] Li, Yanyan, Zhu, Meijun Yamabe type equations on three-dimensional Riemannian manifolds Commun. Contemp. Math. 1999 1 50

[12] Marques, Fernando Coda A priori estimates for the Yamabe problem in the non-locally conformally flat case J. Differential Geom. 2005 315 346

[13] Pollack, Daniel Nonuniqueness and high energy solutions for a conformally invariant scalar equation Comm. Anal. Geom. 1993 347 414

[14] Rey, Olivier The role of the Green’s function in a nonlinear elliptic equation involving the critical Sobolev exponent J. Funct. Anal. 1990 1 52

[15] Schoen, Richard Conformal deformation of a Riemannian metric to constant scalar curvature J. Differential Geom. 1984 479 495

[16] Schoen, Richard M. Variational theory for the total scalar curvature functional for Riemannian metrics and related topics 1989 120 154

[17] Schoen, Richard M. On the number of constant scalar curvature metrics in a conformal class 1991 311 320

[18] Schoen, Richard M. A report on some recent progress on nonlinear problems in geometry 1991 201 241

[19] Trudinger, Neil S. Remarks concerning the conformal deformation of Riemannian structures on compact manifolds Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 1968 265 274

Cité par Sources :