Parabolic transfer for real groups
Journal of the American Mathematical Society, Tome 21 (2008) no. 1, pp. 171-234

Voir la notice de l'article provenant de la source American Mathematical Society

We shall establish an identity between distributions on different real reductive groups. The distributions arise from the trace formula. They represent the main archimedean terms in both the invariant and stable forms of the trace formula. The identity will be an essential part of the comparison of these formulas. As such, it is expected to lead to reciprocity laws among automorphic representations on different groups. Our techniques are analytic. We shall show that the difference of the two sides of the proposed identity is the solution of a homogeous boundary value problem. More precisely, we shall show that it satisfies a system of linear differential equations, that it obeys certain boundary conditions around the singular set, and that it is asymptotic to zero. We shall then show that any such solution vanishes.
DOI : 10.1090/S0894-0347-07-00574-7

Arthur, James 1

1 Department of Mathematics, University of Toronto, Bahen Centre, 6th Floor, 40 St George Street, Toronto, ON M5S 2E4 Canada
@article{10_1090_S0894_0347_07_00574_7,
     author = {Arthur, James},
     title = {Parabolic transfer for real groups},
     journal = {Journal of the American Mathematical Society},
     pages = {171--234},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2008},
     doi = {10.1090/S0894-0347-07-00574-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00574-7/}
}
TY  - JOUR
AU  - Arthur, James
TI  - Parabolic transfer for real groups
JO  - Journal of the American Mathematical Society
PY  - 2008
SP  - 171
EP  - 234
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00574-7/
DO  - 10.1090/S0894-0347-07-00574-7
ID  - 10_1090_S0894_0347_07_00574_7
ER  - 
%0 Journal Article
%A Arthur, James
%T Parabolic transfer for real groups
%J Journal of the American Mathematical Society
%D 2008
%P 171-234
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00574-7/
%R 10.1090/S0894-0347-07-00574-7
%F 10_1090_S0894_0347_07_00574_7
Arthur, James. Parabolic transfer for real groups. Journal of the American Mathematical Society, Tome 21 (2008) no. 1, pp. 171-234. doi: 10.1090/S0894-0347-07-00574-7

[1] Arthur, James The characters of discrete series as orbital integrals Invent. Math. 1976 205 261

[2] Arthur, James The local behaviour of weighted orbital integrals Duke Math. J. 1988 223 293

[3] Arthur, James The invariant trace formula. I. Local theory J. Amer. Math. Soc. 1988 323 383

[4] Arthur, James Intertwining operators and residues. I. Weighted characters J. Funct. Anal. 1989 19 84

[5] Arthur, James On elliptic tempered characters Acta Math. 1993 73 138

[6] Arthur, James On the Fourier transforms of weighted orbital integrals J. Reine Angew. Math. 1994 163 217

[7] Arthur, James The trace Paley Wiener theorem for Schwartz functions 1994 171 180

[8] Arthur, James Canonical normalization of weighted characters and a transfer conjecture C. R. Math. Acad. Sci. Soc. R. Can. 1998 33 52

[9] Arthur, James Endoscopic 𝐿-functions and a combinatorial identity Canad. J. Math. 1999 1135 1148

[10] Arthur, James On the transfer of distributions: weighted orbital integrals Duke Math. J. 1999 209 283

[11] Arthur, James Stabilization of a family of differential equations 2000 77 95

[12] Arthur, James A stable trace formula. III. Proof of the main theorems Ann. of Math. (2) 2003 769 873

[13] Arthur, James An asymptotic formula for real groups J. Reine Angew. Math. 2006 163 230

[14] Arthur, James, Clozel, Laurent Simple algebras, base change, and the advanced theory of the trace formula 1989

[15] Clozel, Laurent, Delorme, Patrick Le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs. II Ann. Sci. École Norm. Sup. (4) 1990 193 228

[16] Harish-Chandra Invariant differential operators and distributions on a semisimple Lie algebra Amer. J. Math. 1964 534 564

[17] Harish-Chandra Harmonic analysis on real reductive groups. I. The theory of the constant term J. Functional Analysis 1975 104 204

[18] Kottwitz, Robert E. Rational conjugacy classes in reductive groups Duke Math. J. 1982 785 806

[19] Kottwitz, Robert E. Stable trace formula: elliptic singular terms Math. Ann. 1986 365 399

[20] Kottwitz, Robert E., Shelstad, Diana Foundations of twisted endoscopy Astérisque 1999

[21] Langlands, R. P. Stable conjugacy: definitions and lemmas Canadian J. Math. 1979 700 725

[22] Langlands, R. P. On the classification of irreducible representations of real algebraic groups 1989 101 170

[23] Langlands, Robert P. Beyond endoscopy 2004 611 697

[24] Langlands, R. P., Shelstad, D. On the definition of transfer factors Math. Ann. 1987 219 271

[25] Langlands, R., Shelstad, D. Descent for transfer factors 1990 485 563

[26] Shelstad, D. Characters and inner forms of a quasi-split group over 𝑅 Compositio Math. 1979 11 45

[27] Shelstad, Diana Orbital integrals and a family of groups attached to a real reductive group Ann. Sci. École Norm. Sup. (4) 1979 1 31

[28] Shelstad, D. 𝐿-indistinguishability for real groups Math. Ann. 1982 385 430

Cité par Sources :