𝐾-regularity, 𝑐𝑑ℎ-fibrant Hochschild homology, and a conjecture of Vorst
Journal of the American Mathematical Society, Tome 21 (2008) no. 2, pp. 547-561

Voir la notice de l'article provenant de la source American Mathematical Society

In this paper we prove that for an affine scheme essentially of finite type over a field $F$ and of dimension $d$, $K_{d+1}$-regularity implies regularity, assuming that the characteristic of $F$ is zero. This verifies a conjecture of Vorst.
DOI : 10.1090/S0894-0347-07-00571-1

Cortiñas, G. 1 ; Haesemeyer, C. 2, 3 ; Weibel, C. 4

1 Departamento Matemática, FCEyN-Universidad de Buenos Aires, Ciudad Universitaria Pab 1, 1428 Buenos Aires, Argentina, and Departamento Álgebra, Faculdad de Ciencias, Prado de la Magdalena s/n, 47005 Valladolid, Spain
2 Department of Mathematics, University of Illinois, Urbana, Illinois 61801
3 Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, 322 SEO, 851 South Morgan Street, Chicago, Illinois 60607-7045
4 Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08901
@article{10_1090_S0894_0347_07_00571_1,
     author = {Corti\~A\ensuremath{\pm}as, G. and Haesemeyer, C. and Weibel, C.},
     title = {{\dh}{\textthreequarters}-regularity, {\dh}‘{\dh}‘‘\^a„Ž-fibrant {Hochschild} homology, and a conjecture of {Vorst}},
     journal = {Journal of the American Mathematical Society},
     pages = {547--561},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2008},
     doi = {10.1090/S0894-0347-07-00571-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00571-1/}
}
TY  - JOUR
AU  - Cortiñas, G.
AU  - Haesemeyer, C.
AU  - Weibel, C.
TI  - 𝐾-regularity, 𝑐𝑑ℎ-fibrant Hochschild homology, and a conjecture of Vorst
JO  - Journal of the American Mathematical Society
PY  - 2008
SP  - 547
EP  - 561
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00571-1/
DO  - 10.1090/S0894-0347-07-00571-1
ID  - 10_1090_S0894_0347_07_00571_1
ER  - 
%0 Journal Article
%A Cortiñas, G.
%A Haesemeyer, C.
%A Weibel, C.
%T 𝐾-regularity, 𝑐𝑑ℎ-fibrant Hochschild homology, and a conjecture of Vorst
%J Journal of the American Mathematical Society
%D 2008
%P 547-561
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00571-1/
%R 10.1090/S0894-0347-07-00571-1
%F 10_1090_S0894_0347_07_00571_1
Cortiñas, G.; Haesemeyer, C.; Weibel, C. 𝐾-regularity, 𝑐𝑑ℎ-fibrant Hochschild homology, and a conjecture of Vorst. Journal of the American Mathematical Society, Tome 21 (2008) no. 2, pp. 547-561. doi: 10.1090/S0894-0347-07-00571-1

[1] Bass, Hyman, Murthy, M. Pavaman Grothendieck groups and Picard groups of abelian group rings Ann. of Math. (2) 1967 16 73

[2] Bousfield, A. K., Friedlander, E. M. Homotopy theory of Γ-spaces, spectra, and bisimplicial sets 1978 80 130

[3] Cuntz, Joachim, Quillen, Daniel Excision in bivariant periodic cyclic cohomology Invent. Math. 1997 67 98

[4] Dayton, Barry H., Weibel, Charles A. 𝐾-theory of hyperplanes Trans. Amer. Math. Soc. 1980 119 141

[5] Goodwillie, Thomas G. Cyclic homology, derivations, and the free loopspace Topology 1985 187 215

[6] Goodwillie, Thomas G. Relative algebraic 𝐾-theory and cyclic homology Ann. of Math. (2) 1986 347 402

[7] Haesemeyer, Christian Descent properties of homotopy 𝐾-theory Duke Math. J. 2004 589 620

[8] Kassel, Christian Cyclic homology, comodules, and mixed complexes J. Algebra 1987 195 216

[9] Kassel, Christian, Sletsjã¸E, Arne B. Base change, transitivity and Künneth formulas for the Quillen decomposition of Hochschild homology Math. Scand. 1992 186 192

[10] Loday, Jean-Louis Cyclic homology 1992

[11] Mazza, Carlo, Voevodsky, Vladimir, Weibel, Charles Lecture notes on motivic cohomology 2006

[12] Nisnevich, Ye. A. The completely decomposed topology on schemes and associated descent spectral sequences in algebraic 𝐾-theory 1989 241 342

[13] Suslin, Andrei, Voevodsky, Vladimir Bloch-Kato conjecture and motivic cohomology with finite coefficients 2000 117 189

[14] Thomason, R. W., Trobaugh, Thomas Higher algebraic 𝐾-theory of schemes and of derived categories 1990 247 435

[15] Vorst, Ton Localization of the 𝐾-theory of polynomial extensions Math. Ann. 1979 33 53

[16] Vorst, Ton Polynomial extensions and excision for 𝐾₁ Math. Ann. 1979 193 204

[17] Weibel, Charles A. Homotopy algebraic 𝐾-theory 1989 461 488

[18] Weibel, Charles A. An introduction to homological algebra 1994

[19] Weibel, Charles Cyclic homology for schemes Proc. Amer. Math. Soc. 1996 1655 1662

[20] Weibel, Charles The Hodge filtration and cyclic homology 𝐾-Theory 1997 145 164

[21] Weibel, Charles The negative 𝐾-theory of normal surfaces Duke Math. J. 2001 1 35

Cité par Sources :