The strange duality conjecture for generic curves
Journal of the American Mathematical Society, Tome 21 (2008) no. 1, pp. 235-258

Voir la notice de l'article provenant de la source American Mathematical Society

Let $X$ be a smooth connected projective algebraic curve of genus $g\geq 1$. The strange duality conjecture connects non-abelian theta functions of rank $r$ and level $k$ and those of rank $k$ and level $r$ on $X$ (for $SU(r)$ and $\operatorname {U}(k)$, respectively). In this paper we prove this conjecture for $X$ generic in the moduli space of curves of genus $g$.
DOI : 10.1090/S0894-0347-07-00569-3

Belkale, Prakash 1

1 Department of Mathematics, University of North Carolina-Chapel Hill, CB #3250, Phillips Hall, Chapel Hill, North Carolina 27599
@article{10_1090_S0894_0347_07_00569_3,
     author = {Belkale, Prakash},
     title = {The strange duality conjecture for generic curves},
     journal = {Journal of the American Mathematical Society},
     pages = {235--258},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2008},
     doi = {10.1090/S0894-0347-07-00569-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00569-3/}
}
TY  - JOUR
AU  - Belkale, Prakash
TI  - The strange duality conjecture for generic curves
JO  - Journal of the American Mathematical Society
PY  - 2008
SP  - 235
EP  - 258
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00569-3/
DO  - 10.1090/S0894-0347-07-00569-3
ID  - 10_1090_S0894_0347_07_00569_3
ER  - 
%0 Journal Article
%A Belkale, Prakash
%T The strange duality conjecture for generic curves
%J Journal of the American Mathematical Society
%D 2008
%P 235-258
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00569-3/
%R 10.1090/S0894-0347-07-00569-3
%F 10_1090_S0894_0347_07_00569_3
Belkale, Prakash. The strange duality conjecture for generic curves. Journal of the American Mathematical Society, Tome 21 (2008) no. 1, pp. 235-258. doi: 10.1090/S0894-0347-07-00569-3

[1] Artin, M. Algebraic approximation of structures over complete local rings Inst. Hautes Études Sci. Publ. Math. 1969 23 58

[2] Beauville, Arnaud Fibrés de rang deux sur une courbe, fibré déterminant et fonctions thêta. II Bull. Soc. Math. France 1991 259 291

[3] Beauville, Arnaud Vector bundles on curves and generalized theta functions: recent results and open problems 1995 17 33

[4] Beauville, Arnaud Vector bundles on Riemann surfaces and conformal field theory 1996 145 166

[5] Beauville, Arnaud, Laszlo, Yves Conformal blocks and generalized theta functions Comm. Math. Phys. 1994 385 419

[6] Beauville, Arnaud, Narasimhan, M. S., Ramanan, S. Spectral curves and the generalised theta divisor J. Reine Angew. Math. 1989 169 179

[7] Belkale, Prakash Invariant theory of 𝐺𝐿(𝑛) and intersection theory of Grassmannians Int. Math. Res. Not. 2004 3709 3721

[8] Bertram, Aaron Quantum Schubert calculus Adv. Math. 1997 289 305

[9] Brion, M., Lakshmibai, V. A geometric approach to standard monomial theory Represent. Theory 2003 651 680

[10] Brion, Michel, Polo, Patrick Large Schubert varieties Represent. Theory 2000 97 126

[11] Deligne, P. Cohomologie étale 1977

[12] Donagi, Ron, Tu, Loring W. Theta functions for 𝑆𝐿(𝑛) versus 𝐺𝐿(𝑛) Math. Res. Lett. 1994 345 357

[13] Drezet, J.-M., Narasimhan, M. S. Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques Invent. Math. 1989 53 94

[14] Esteves, Eduardo Separation properties of theta functions Duke Math. J. 1999 565 593

[15] Faltings, Gerd Stable 𝐺-bundles and projective connections J. Algebraic Geom. 1993 507 568

[16] Faltings, Gerd A proof for the Verlinde formula J. Algebraic Geom. 1994 347 374

[17] Fulton, William Intersection theory 1998

[18] Fulton, W., Pandharipande, R. Notes on stable maps and quantum cohomology 1997 45 96

[19] Gepner, Doron Fusion rings and geometry Comm. Math. Phys. 1991 381 411

[20] Kleiman, Steven L. The transversality of a general translate Compositio Math. 1974 287 297

[21] Knudsen, Finn Faye, Mumford, David The projectivity of the moduli space of stable curves. I. Preliminaries on “det” and “Div” Math. Scand. 1976 19 55

[22] Kumar, Shrawan, Narasimhan, M. S., Ramanathan, A. Infinite Grassmannians and moduli spaces of 𝐺-bundles Math. Ann. 1994 41 75

[23] Laszlo, Yves À propos de l’espace des modules de fibrés de rang 2 sur une courbe Math. Ann. 1994 597 608

[24] Milne, James S. Étale cohomology 1980

[25] Pauly, Christian Espaces de modules de fibrés paraboliques et blocs conformes Duke Math. J. 1996 217 235

[26] Polishchuk, Alexander Abelian varieties, theta functions and the Fourier transform 2003

[27] Popa, Mihnea Verlinde bundles and generalized theta linear series Trans. Amer. Math. Soc. 2002 1869 1898

[28] Le Potier, J. Lectures on vector bundles 1997

[29] Seshadri, C. S. Vector bundles on curves 1993 163 200

[30] Tsuchiya, Akihiro, Ueno, Kenji, Yamada, Yasuhiko Conformal field theory on universal family of stable curves with gauge symmetries 1989 459 566

[31] Van Geemen, Bert, Previato, Emma Prym varieties and the Verlinde formula Math. Ann. 1992 741 754

[32] Witten, Edward The Verlinde algebra and the cohomology of the Grassmannian 1995 357 422

Cité par Sources :