Edge coloring models and reflection positivity
Journal of the American Mathematical Society, Tome 20 (2007) no. 4, pp. 969-988
Voir la notice de l'article provenant de la source American Mathematical Society
Solving a conjecture of M. H. Freedman, L. Lovász and A. Schrijver, we prove that a graph parameter is edge reflection positive and multiplicative if and only if it can be represented by an edge coloring model.
@article{10_1090_S0894_0347_07_00568_1,
author = {Szegedy, Bal\~A{\textexclamdown}zs},
title = {Edge coloring models and reflection positivity},
journal = {Journal of the American Mathematical Society},
pages = {969--988},
publisher = {mathdoc},
volume = {20},
number = {4},
year = {2007},
doi = {10.1090/S0894-0347-07-00568-1},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00568-1/}
}
TY - JOUR AU - Szegedy, Balázs TI - Edge coloring models and reflection positivity JO - Journal of the American Mathematical Society PY - 2007 SP - 969 EP - 988 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00568-1/ DO - 10.1090/S0894-0347-07-00568-1 ID - 10_1090_S0894_0347_07_00568_1 ER -
%0 Journal Article %A Szegedy, Balázs %T Edge coloring models and reflection positivity %J Journal of the American Mathematical Society %D 2007 %P 969-988 %V 20 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00568-1/ %R 10.1090/S0894-0347-07-00568-1 %F 10_1090_S0894_0347_07_00568_1
Szegedy, Balázs. Edge coloring models and reflection positivity. Journal of the American Mathematical Society, Tome 20 (2007) no. 4, pp. 969-988. doi: 10.1090/S0894-0347-07-00568-1
[1] The geometry and physics of knots 1990
[2] , , Real algebraic geometry 1998
[3] , , , , , Universal manifold pairings and positivity Geom. Topol. 2005 2303 2317
[4] , , Reflection positivity, rank connectivity, and homomorphism of graphs J. Amer. Math. Soc. 2007 37 51
[5] The rank of connection matrices and the dimension of graph algebras European J. Combin. 2006 962 970
[6] , Limits of dense graph sequences J. Combin. Theory Ser. B 2006 933 957
[7] The classical groups 1997
Cité par Sources :