Edge coloring models and reflection positivity
Journal of the American Mathematical Society, Tome 20 (2007) no. 4, pp. 969-988

Voir la notice de l'article provenant de la source American Mathematical Society

Solving a conjecture of M. H. Freedman, L. Lovász and A. Schrijver, we prove that a graph parameter is edge reflection positive and multiplicative if and only if it can be represented by an edge coloring model.
DOI : 10.1090/S0894-0347-07-00568-1

Szegedy, Balázs 1

1 Microsoft Research, One Microsoft Way, Redmond, Washington 98052
@article{10_1090_S0894_0347_07_00568_1,
     author = {Szegedy, Bal\~A{\textexclamdown}zs},
     title = {Edge coloring models and reflection positivity},
     journal = {Journal of the American Mathematical Society},
     pages = {969--988},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2007},
     doi = {10.1090/S0894-0347-07-00568-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00568-1/}
}
TY  - JOUR
AU  - Szegedy, Balázs
TI  - Edge coloring models and reflection positivity
JO  - Journal of the American Mathematical Society
PY  - 2007
SP  - 969
EP  - 988
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00568-1/
DO  - 10.1090/S0894-0347-07-00568-1
ID  - 10_1090_S0894_0347_07_00568_1
ER  - 
%0 Journal Article
%A Szegedy, Balázs
%T Edge coloring models and reflection positivity
%J Journal of the American Mathematical Society
%D 2007
%P 969-988
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00568-1/
%R 10.1090/S0894-0347-07-00568-1
%F 10_1090_S0894_0347_07_00568_1
Szegedy, Balázs. Edge coloring models and reflection positivity. Journal of the American Mathematical Society, Tome 20 (2007) no. 4, pp. 969-988. doi: 10.1090/S0894-0347-07-00568-1

[1] Atiyah, Michael The geometry and physics of knots 1990

[2] Bochnak, Jacek, Coste, Michel, Roy, Marie-Franã§Oise Real algebraic geometry 1998

[3] Freedman, Michael H., Kitaev, Alexei, Nayak, Chetan, Slingerland, Johannes K., Walker, Kevin, Wang, Zhenghan Universal manifold pairings and positivity Geom. Topol. 2005 2303 2317

[4] Freedman, Michael, Lovã¡Sz, Lã¡Szlã³, Schrijver, Alexander Reflection positivity, rank connectivity, and homomorphism of graphs J. Amer. Math. Soc. 2007 37 51

[5] Lovã¡Sz, Lã¡Szlã³ The rank of connection matrices and the dimension of graph algebras European J. Combin. 2006 962 970

[6] Lovã¡Sz, Lã¡Szlã³, Szegedy, Balã¡Zs Limits of dense graph sequences J. Combin. Theory Ser. B 2006 933 957

[7] Weyl, Hermann The classical groups 1997

Cité par Sources :