An infinite dimensional affine nil algebra with finite Gelfand-Kirillov dimension
Journal of the American Mathematical Society, Tome 20 (2007) no. 4, pp. 989-1001
Voir la notice de l'article provenant de la source American Mathematical Society
The famous 1960âs construction of Golod and Shafarevich yields infinite dimensional nil, but not nilpotent, algebras. However, these algebras have exponential growth. Here, we construct an infinite dimensional nil, but not locally nilpotent, algebra which has polynomially bounded growth.
Affiliations des auteurs :
Lenagan, T. 1 ; Smoktunowicz, Agata 2, 1
@article{10_1090_S0894_0347_07_00565_6,
author = {Lenagan, T. and Smoktunowicz, Agata},
title = {An infinite dimensional affine nil algebra with finite {Gelfand-Kirillov} dimension},
journal = {Journal of the American Mathematical Society},
pages = {989--1001},
publisher = {mathdoc},
volume = {20},
number = {4},
year = {2007},
doi = {10.1090/S0894-0347-07-00565-6},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00565-6/}
}
TY - JOUR AU - Lenagan, T. AU - Smoktunowicz, Agata TI - An infinite dimensional affine nil algebra with finite Gelfand-Kirillov dimension JO - Journal of the American Mathematical Society PY - 2007 SP - 989 EP - 1001 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00565-6/ DO - 10.1090/S0894-0347-07-00565-6 ID - 10_1090_S0894_0347_07_00565_6 ER -
%0 Journal Article %A Lenagan, T. %A Smoktunowicz, Agata %T An infinite dimensional affine nil algebra with finite Gelfand-Kirillov dimension %J Journal of the American Mathematical Society %D 2007 %P 989-1001 %V 20 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00565-6/ %R 10.1090/S0894-0347-07-00565-6 %F 10_1090_S0894_0347_07_00565_6
Lenagan, T.; Smoktunowicz, Agata. An infinite dimensional affine nil algebra with finite Gelfand-Kirillov dimension. Journal of the American Mathematical Society, Tome 20 (2007) no. 4, pp. 989-1001. doi: 10.1090/S0894-0347-07-00565-6
[1] Combinatorial and asymptotic methods in algebra [ MR1060321 (92h:16024)] 1995 1 196
[2] , On the class field tower Izv. Akad. Nauk SSSR Ser. Mat. 1964 261 272
[3] , Growth of algebras and Gelfand-Kirillov dimension 2000
[4] , , Affine algebras of Gelâ²fand-Kirillov dimension one are PI Math. Proc. Cambridge Philos. Soc. 1985 407 414
[5] Polynomial rings over nil rings need not be nil J. Algebra 2000 427 436
Cité par Sources :