Lower bounds on volumes of hyperbolic Haken 3-manifolds
Journal of the American Mathematical Society, Tome 20 (2007) no. 4, pp. 1053-1077

Voir la notice de l'article provenant de la source American Mathematical Society

We prove a volume inequality for 3-manifolds having $C^{0}$ metrics “bent” along a surface and satisfying certain curvature conditions. The result makes use of Perelman’s work on the Ricci flow and geometrization of closed 3-manifolds. Corollaries include a new proof of a conjecture of Bonahon about volumes of convex cores of Kleinian groups, improved volume estimates for certain Haken hyperbolic 3-manifolds, and a lower bound on the minimal volume of orientable hyperbolic 3-manifolds. An appendix compares estimates of volumes of hyperbolic 3-manifolds drilled along a closed embedded geodesic with experimental data.
DOI : 10.1090/S0894-0347-07-00564-4

Agol, Ian 1, 2 ; Storm, Peter 3 ; Thurston, William 4

1 Department of Mathematics, Computer Science, and Statistics, University of Illinois at Chicago, 322 SEO, m/c 249, 851 S. Morgan St., Chicago, Illinois 60607-7045
2 Department of Mathematics, University of California at Berkeley, 970 Evans Hall #3840, Berkeley, California 94720-3840
3 Department of Mathematics, Stanford University, Building 380, 450 Serra Mall, Stanford, California 94305-2125
4 Department of Mathematics, Cornell University, 310 Malott Hall, Ithaca, New York 14853-4201
@article{10_1090_S0894_0347_07_00564_4,
     author = {Agol, Ian and Storm, Peter and Thurston, William},
     title = {Lower bounds on volumes of hyperbolic {Haken} 3-manifolds},
     journal = {Journal of the American Mathematical Society},
     pages = {1053--1077},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2007},
     doi = {10.1090/S0894-0347-07-00564-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00564-4/}
}
TY  - JOUR
AU  - Agol, Ian
AU  - Storm, Peter
AU  - Thurston, William
TI  - Lower bounds on volumes of hyperbolic Haken 3-manifolds
JO  - Journal of the American Mathematical Society
PY  - 2007
SP  - 1053
EP  - 1077
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00564-4/
DO  - 10.1090/S0894-0347-07-00564-4
ID  - 10_1090_S0894_0347_07_00564_4
ER  - 
%0 Journal Article
%A Agol, Ian
%A Storm, Peter
%A Thurston, William
%T Lower bounds on volumes of hyperbolic Haken 3-manifolds
%J Journal of the American Mathematical Society
%D 2007
%P 1053-1077
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00564-4/
%R 10.1090/S0894-0347-07-00564-4
%F 10_1090_S0894_0347_07_00564_4
Agol, Ian; Storm, Peter; Thurston, William. Lower bounds on volumes of hyperbolic Haken 3-manifolds. Journal of the American Mathematical Society, Tome 20 (2007) no. 4, pp. 1053-1077. doi: 10.1090/S0894-0347-07-00564-4

[1] Agol, Ian Volume change under drilling Geom. Topol. 2002 905 916

[2] Atiyah, Michael Quantum field theory and low-dimensional geometry Progr. Theoret. Phys. Suppl. 1990

[3] Aubin, Thierry Some nonlinear problems in Riemannian geometry 1998

[4] Bessiã¨Res, Laurent Sur le volume minimal des variétés ouvertes Ann. Inst. Fourier (Grenoble) 2000 965 980

[5] Besson, Gã©Rard, Courtois, Gilles, Gallot, Sylvestre Lemme de Schwarz réel et applications géométriques Acta Math. 1999 145 169

[6] Bray, Hubert L. Proof of the Riemannian Penrose inequality using the positive mass theorem J. Differential Geom. 2001 177 267

[7] Bridgeman, Martin Bounds on volume increase under Dehn drilling operations Proc. London Math. Soc. (3) 1998 415 436

[8] Cao, Chun, Meyerhoff, G. Robert The orientable cusped hyperbolic 3-manifolds of minimum volume Invent. Math. 2001 451 478

[9] Cao, Huai-Dong, Zhu, Xi-Ping A complete proof of the Poincaré and geometrization conjectures—application of the Hamilton-Perelman theory of the Ricci flow Asian J. Math. 2006 165 492

[10] Culler, Marc, Shalen, Peter B. Volumes of hyperbolic Haken manifolds. I Invent. Math. 1994 285 329

[11] Epstein, D. B. A., Marden, A. Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces 1987 113 253

[12] Freedman, Michael, Hass, Joel, Scott, Peter Least area incompressible surfaces in 3-manifolds Invent. Math. 1983 609 642

[13] Freedman, Michael H., Kitaev, Alexei, Nayak, Chetan, Slingerland, Johannes K., Walker, Kevin, Wang, Zhenghan Universal manifold pairings and positivity Geom. Topol. 2005 2303 2317

[14] Gabai, David, Kazez, William H. Group negative curvature for 3-manifolds with genuine laminations Geom. Topol. 1998 65 77

[15] Gabai, David, Meyerhoff, G. Robert, Thurston, Nathaniel Homotopy hyperbolic 3-manifolds are hyperbolic Ann. of Math. (2) 2003 335 431

[16] Hamilton, Richard S. Non-singular solutions of the Ricci flow on three-manifolds Comm. Anal. Geom. 1999 695 729

[17] Hass, Joel Acylindrical surfaces in 3-manifolds Michigan Math. J. 1995 357 365

[18] Hass, Joel, Rubinstein, J. Hyam, Wang, Shicheng Boundary slopes of immersed surfaces in 3-manifolds J. Differential Geom. 1999 303 325

[19] Hass, Joel, Scott, Peter The existence of least area surfaces in 3-manifolds Trans. Amer. Math. Soc. 1988 87 114

[20] Hodgson, Craig D., Kerckhoff, Steven P. Universal bounds for hyperbolic Dehn surgery Ann. of Math. (2) 2005 367 421

[21] Jaco, William H., Shalen, Peter B. Seifert fibered spaces in 3-manifolds Mem. Amer. Math. Soc. 1979

[22] Johannson, Klaus Homotopy equivalences of 3-manifolds with boundaries 1979

[23] Lackenby, Marc The volume of hyperbolic alternating link complements Proc. London Math. Soc. (3) 2004 204 224

[24] Leeb, Bernhard 3-manifolds with(out) metrics of nonpositive curvature Invent. Math. 1995 277 289

[25] Miao, Pengzi Positive mass theorem on manifolds admitting corners along a hypersurface Adv. Theor. Math. Phys. 2002

[26] Miyamoto, Yosuke Volumes of hyperbolic manifolds with geodesic boundary Topology 1994 613 629

[27] Morgan, John W. On Thurston’s uniformization theorem for three-dimensional manifolds 1984 37 125

[28] Neumann, Walter D., Zagier, Don Volumes of hyperbolic three-manifolds Topology 1985 307 332

[29] Przeworski, Andrew A universal upper bound on density of tube packings in hyperbolic space J. Differential Geom. 2006 113 127

[30] Reed, Michael, Simon, Barry Methods of modern mathematical physics. I. Functional analysis 1972

[31] Schoen, Richard Estimates for stable minimal surfaces in three-dimensional manifolds 1983 111 126

[32] Schoen, Richard M. Variational theory for the total scalar curvature functional for Riemannian metrics and related topics 1989 120 154

[33] Shioya, Takashi, Yamaguchi, Takao Volume collapsed three-manifolds with a lower curvature bound Math. Ann. 2005 131 155

[34] Simon, Miles Deformation of 𝐶⁰ Riemannian metrics in the direction of their Ricci curvature Comm. Anal. Geom. 2002 1033 1074

[35] Soma, Teruhiko The Gromov invariant of links Invent. Math. 1981 445 454

[36] Vinberg, È. B. Volumes of non-Euclidean polyhedra Uspekhi Mat. Nauk 1993 17 46

Cité par Sources :