Voir la notice de l'article provenant de la source American Mathematical Society
Agol, Ian 1, 2 ; Storm, Peter 3 ; Thurston, William 4
@article{10_1090_S0894_0347_07_00564_4,
author = {Agol, Ian and Storm, Peter and Thurston, William},
title = {Lower bounds on volumes of hyperbolic {Haken} 3-manifolds},
journal = {Journal of the American Mathematical Society},
pages = {1053--1077},
publisher = {mathdoc},
volume = {20},
number = {4},
year = {2007},
doi = {10.1090/S0894-0347-07-00564-4},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00564-4/}
}
TY - JOUR AU - Agol, Ian AU - Storm, Peter AU - Thurston, William TI - Lower bounds on volumes of hyperbolic Haken 3-manifolds JO - Journal of the American Mathematical Society PY - 2007 SP - 1053 EP - 1077 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00564-4/ DO - 10.1090/S0894-0347-07-00564-4 ID - 10_1090_S0894_0347_07_00564_4 ER -
%0 Journal Article %A Agol, Ian %A Storm, Peter %A Thurston, William %T Lower bounds on volumes of hyperbolic Haken 3-manifolds %J Journal of the American Mathematical Society %D 2007 %P 1053-1077 %V 20 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00564-4/ %R 10.1090/S0894-0347-07-00564-4 %F 10_1090_S0894_0347_07_00564_4
Agol, Ian; Storm, Peter; Thurston, William. Lower bounds on volumes of hyperbolic Haken 3-manifolds. Journal of the American Mathematical Society, Tome 20 (2007) no. 4, pp. 1053-1077. doi: 10.1090/S0894-0347-07-00564-4
[1] Volume change under drilling Geom. Topol. 2002 905 916
[2] Quantum field theory and low-dimensional geometry Progr. Theoret. Phys. Suppl. 1990
[3] Some nonlinear problems in Riemannian geometry 1998
[4] Sur le volume minimal des variétés ouvertes Ann. Inst. Fourier (Grenoble) 2000 965 980
[5] , , Lemme de Schwarz réel et applications géométriques Acta Math. 1999 145 169
[6] Proof of the Riemannian Penrose inequality using the positive mass theorem J. Differential Geom. 2001 177 267
[7] Bounds on volume increase under Dehn drilling operations Proc. London Math. Soc. (3) 1998 415 436
[8] , The orientable cusped hyperbolic 3-manifolds of minimum volume Invent. Math. 2001 451 478
[9] , A complete proof of the Poincaré and geometrization conjecturesâapplication of the Hamilton-Perelman theory of the Ricci flow Asian J. Math. 2006 165 492
[10] , Volumes of hyperbolic Haken manifolds. I Invent. Math. 1994 285 329
[11] , Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces 1987 113 253
[12] , , Least area incompressible surfaces in 3-manifolds Invent. Math. 1983 609 642
[13] , , , , , Universal manifold pairings and positivity Geom. Topol. 2005 2303 2317
[14] , Group negative curvature for 3-manifolds with genuine laminations Geom. Topol. 1998 65 77
[15] , , Homotopy hyperbolic 3-manifolds are hyperbolic Ann. of Math. (2) 2003 335 431
[16] Non-singular solutions of the Ricci flow on three-manifolds Comm. Anal. Geom. 1999 695 729
[17] Acylindrical surfaces in 3-manifolds Michigan Math. J. 1995 357 365
[18] , , Boundary slopes of immersed surfaces in 3-manifolds J. Differential Geom. 1999 303 325
[19] , The existence of least area surfaces in 3-manifolds Trans. Amer. Math. Soc. 1988 87 114
[20] , Universal bounds for hyperbolic Dehn surgery Ann. of Math. (2) 2005 367 421
[21] , Seifert fibered spaces in 3-manifolds Mem. Amer. Math. Soc. 1979
[22] Homotopy equivalences of 3-manifolds with boundaries 1979
[23] The volume of hyperbolic alternating link complements Proc. London Math. Soc. (3) 2004 204 224
[24] 3-manifolds with(out) metrics of nonpositive curvature Invent. Math. 1995 277 289
[25] Positive mass theorem on manifolds admitting corners along a hypersurface Adv. Theor. Math. Phys. 2002
[26] Volumes of hyperbolic manifolds with geodesic boundary Topology 1994 613 629
[27] On Thurstonâs uniformization theorem for three-dimensional manifolds 1984 37 125
[28] , Volumes of hyperbolic three-manifolds Topology 1985 307 332
[29] A universal upper bound on density of tube packings in hyperbolic space J. Differential Geom. 2006 113 127
[30] , Methods of modern mathematical physics. I. Functional analysis 1972
[31] Estimates for stable minimal surfaces in three-dimensional manifolds 1983 111 126
[32] Variational theory for the total scalar curvature functional for Riemannian metrics and related topics 1989 120 154
[33] , Volume collapsed three-manifolds with a lower curvature bound Math. Ann. 2005 131 155
[34] Deformation of ð¶â° Riemannian metrics in the direction of their Ricci curvature Comm. Anal. Geom. 2002 1033 1074
[35] The Gromov invariant of links Invent. Math. 1981 445 454
[36] Volumes of non-Euclidean polyhedra Uspekhi Mat. Nauk 1993 17 46
Cité par Sources :