The module structure of a group action on a polynomial ring: A finiteness theorem
Journal of the American Mathematical Society, Tome 20 (2007) no. 4, pp. 931-967

Voir la notice de l'article provenant de la source American Mathematical Society

Consider a group acting on a polynomial ring over a finite field. We study the polynomial ring as a module for the group and prove a structure theorem with several striking corollaries. For example, any indecomposable module that appears as a summand must also appear in low degree, and so the number of isomorphism types of such summands is finite. There are also applications to invariant theory, giving a priori bounds on the degrees of the generators.
DOI : 10.1090/S0894-0347-07-00563-2

Karagueuzian, Dikran 1 ; Symonds, Peter 2

1 Mathematics Department, Binghamton University, P.O. Box 6000, Binghamton, New York 13902-6000
2 School of Mathematics, University of Manchester, P.O. Box 88, Manchester M60 1QD, United Kingdom
@article{10_1090_S0894_0347_07_00563_2,
     author = {Karagueuzian, Dikran and Symonds, Peter},
     title = {The module structure of a group action on a polynomial ring: {A} finiteness theorem},
     journal = {Journal of the American Mathematical Society},
     pages = {931--967},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2007},
     doi = {10.1090/S0894-0347-07-00563-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00563-2/}
}
TY  - JOUR
AU  - Karagueuzian, Dikran
AU  - Symonds, Peter
TI  - The module structure of a group action on a polynomial ring: A finiteness theorem
JO  - Journal of the American Mathematical Society
PY  - 2007
SP  - 931
EP  - 967
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00563-2/
DO  - 10.1090/S0894-0347-07-00563-2
ID  - 10_1090_S0894_0347_07_00563_2
ER  - 
%0 Journal Article
%A Karagueuzian, Dikran
%A Symonds, Peter
%T The module structure of a group action on a polynomial ring: A finiteness theorem
%J Journal of the American Mathematical Society
%D 2007
%P 931-967
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00563-2/
%R 10.1090/S0894-0347-07-00563-2
%F 10_1090_S0894_0347_07_00563_2
Karagueuzian, Dikran; Symonds, Peter. The module structure of a group action on a polynomial ring: A finiteness theorem. Journal of the American Mathematical Society, Tome 20 (2007) no. 4, pp. 931-967. doi: 10.1090/S0894-0347-07-00563-2

[1] Almkvist, Gert, Fossum, Robert Decomposition of exterior and symmetric powers of indecomposable 𝑍/𝑝𝑍-modules in characteristic 𝑝 and relations to invariants 1978 1 111

[2] Alperin, J., Kovacs, L. G. Periodicity of Weyl modules for 𝑆𝐿(2,𝑞) J. Algebra 1982 52 54

[3] Bosma, Wieb, Cannon, John, Playoust, Catherine The Magma algebra system. I. The user language J. Symbolic Comput. 1997 235 265

[4] Bryant, Roger M. Symmetric powers of representations of finite groups J. Algebra 1993 416 436

[5] Campbell, H. E. A., Hughes, I. P. The ring of upper triangular invariants as a module over the Dickson invariants Math. Ann. 1996 429 443

[6] Derksen, Harm, Kemper, Gregor Computational invariant theory 2002

[7] Doty, Stephen R. The submodule structure of certain Weyl modules for groups of type 𝐴_{𝑛} J. Algebra 1985 373 383

[8] Hermann, Grete Die Frage der endlich vielen Schritte in der Theorie der Polynomideale Math. Ann. 1926 736 788

[9] Howe, Roger Asymptotics of dimensions of invariants for finite groups J. Algebra 1989 374 379

[10] Karagueuzian, Dikran B., Symonds, Peter The module structure of a group action on a polynomial ring J. Algebra 1999 672 692

[11] Karagueuzian, D. B., Symonds, P. The module structure of a group action on a polynomial ring: examples, generalizations, and applications 2004 139 158

[12] Glover, D. J. A study of certain modular representations J. Algebra 1978 425 475

[13] Hughes, Ian, Kemper, Gregor Symmetric powers of modular representations, Hilbert series and degree bounds Comm. Algebra 2000 2059 2088

[14] Hughes, Ian, Kemper, Gregor Symmetric powers of modular representations for groups with a Sylow subgroup of prime order J. Algebra 2001 759 788

[15] HuỳNh Mui Modular invariant theory and cohomology algebras of symmetric groups J. Fac. Sci. Univ. Tokyo Sect. IA Math. 1975 319 369

[16] Shank, R. James, Wehlau, David L. The transfer in modular invariant theory J. Pure Appl. Algebra 1999 63 77

[17] Symonds, Peter Group action on polynomial and power series rings Pacific J. Math. 2000 225 230

Cité par Sources :