On the uniqueness of the foliation of spheres of constant mean curvature in asymptotically flat 3-manifolds
Journal of the American Mathematical Society, Tome 20 (2007) no. 4, pp. 1091-1110

Voir la notice de l'article provenant de la source American Mathematical Society

In this note we study constant mean curvature surfaces in asymptotically flat 3-manifolds. We prove that, outside a given compact subset in an asymptotically flat 3-manifold with positive mass, stable spheres of given constant mean curvature are unique. Therefore we are able to conclude that the foliation of stable spheres of constant mean curvature in an asymptotically flat 3-manifold with positive mass outside a given compact subset is unique.
DOI : 10.1090/S0894-0347-07-00560-7

Qing, Jie 1 ; Tian, Gang 2

1 Department of Mathematics, University of California, Santa Cruz, Santa Cruz, California 95064
2 Department of Mathematics, Princeton University, Princeton, New Jersey 08544
@article{10_1090_S0894_0347_07_00560_7,
     author = {Qing, Jie and Tian, Gang},
     title = {On the uniqueness of the foliation of spheres of constant mean curvature in asymptotically flat 3-manifolds},
     journal = {Journal of the American Mathematical Society},
     pages = {1091--1110},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2007},
     doi = {10.1090/S0894-0347-07-00560-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00560-7/}
}
TY  - JOUR
AU  - Qing, Jie
AU  - Tian, Gang
TI  - On the uniqueness of the foliation of spheres of constant mean curvature in asymptotically flat 3-manifolds
JO  - Journal of the American Mathematical Society
PY  - 2007
SP  - 1091
EP  - 1110
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00560-7/
DO  - 10.1090/S0894-0347-07-00560-7
ID  - 10_1090_S0894_0347_07_00560_7
ER  - 
%0 Journal Article
%A Qing, Jie
%A Tian, Gang
%T On the uniqueness of the foliation of spheres of constant mean curvature in asymptotically flat 3-manifolds
%J Journal of the American Mathematical Society
%D 2007
%P 1091-1110
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00560-7/
%R 10.1090/S0894-0347-07-00560-7
%F 10_1090_S0894_0347_07_00560_7
Qing, Jie; Tian, Gang. On the uniqueness of the foliation of spheres of constant mean curvature in asymptotically flat 3-manifolds. Journal of the American Mathematical Society, Tome 20 (2007) no. 4, pp. 1091-1110. doi: 10.1090/S0894-0347-07-00560-7

[1] Bartnik, Robert The mass of an asymptotically flat manifold Comm. Pure Appl. Math. 1986 661 693

[2] Christodoulou, D., Yau, S.-T. Some remarks on the quasi-local mass 1988 9 14

[3] Michael, J. H., Simon, L. M. Sobolev and mean-value inequalities on generalized submanifolds of 𝑅ⁿ Comm. Pure Appl. Math. 1973 361 379

[4] Huisken, Gerhard, Yau, Shing-Tung Definition of center of mass for isolated physical systems and unique foliations by stable spheres with constant mean curvature Invent. Math. 1996 281 311

[5] Kenmotsu, Katsuei Surfaces with constant mean curvature 2003

[6] Qing, Jie, Tian, Gang Bubbling of the heat flows for harmonic maps from surfaces Comm. Pure Appl. Math. 1997 295 310

[7] Schoen, R., Simon, L., Yau, S. T. Curvature estimates for minimal hypersurfaces Acta Math. 1975 275 288

[8] Simon, Leon Existence of Willmore surfaces 1986 187 216

[9] Simons, James Minimal varieties in riemannian manifolds Ann. of Math. (2) 1968 62 105

[10] Ye, Rugang Foliation by constant mean curvature spheres on asymptotically flat manifolds 1996 369 383

Cité par Sources :