Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_07_00559_0,
author = {Chen, Shuxing},
title = {Mach configuration in pseudo-stationary compressible flow},
journal = {Journal of the American Mathematical Society},
pages = {63--100},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2008},
doi = {10.1090/S0894-0347-07-00559-0},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00559-0/}
}
TY - JOUR AU - Chen, Shuxing TI - Mach configuration in pseudo-stationary compressible flow JO - Journal of the American Mathematical Society PY - 2008 SP - 63 EP - 100 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00559-0/ DO - 10.1090/S0894-0347-07-00559-0 ID - 10_1090_S0894_0347_07_00559_0 ER -
%0 Journal Article %A Chen, Shuxing %T Mach configuration in pseudo-stationary compressible flow %J Journal of the American Mathematical Society %D 2008 %P 63-100 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00559-0/ %R 10.1090/S0894-0347-07-00559-0 %F 10_1090_S0894_0347_07_00559_0
Chen, Shuxing. Mach configuration in pseudo-stationary compressible flow. Journal of the American Mathematical Society, Tome 21 (2008) no. 1, pp. 63-100. doi: 10.1090/S0894-0347-07-00559-0
[1] , , Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I Comm. Pure Appl. Math. 1959 623 727
[2] , , Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II Comm. Pure Appl. Math. 1964 35 92
[3] , Mach reflection for the two-dimensional Burgers equation Phys. D 1992 194 207
[4] , Construction of corner singularities for Agmon-Douglis-Nirenberg elliptic systems Math. Nachr. 1993 209 237
[5] , Stable asymptotics for elliptic systems on plane domains with corners Comm. Partial Differential Equations 1994 1677 1726
[6] , Riemann problems for the two-dimensional unsteady transonic small disturbance equation SIAM J. Appl. Math. 1998 636 665
[7] , , A proof of existence of perturbed steady transonic shocks via a free boundary problem Comm. Pure Appl. Math. 2000 484 511
[8] , , Free boundary problems for the unsteady transonic small disturbance equation: transonic regular reflection Methods Appl. Anal. 2000 313 335
[9] , , A free boundary problem for a quasi-linear degenerate elliptic equation: regular reflection of weak shocks Comm. Pure Appl. Math. 2002 71 92
[10] Linear approximation of shock reflection at a wedge with large angle Comm. Partial Differential Equations 1996 1103 1118
[11] Stability of transonic shock fronts in two-dimensional Euler systems Trans. Amer. Math. Soc. 2005 287 308
[12] Stability of a Mach configuration Comm. Pure Appl. Math. 2006 1 35
[13] , Supersonic Flow and Shock Waves 1948
[14] Hyperbolic conservation laws in continuum physics 2000
[15] Elliptic boundary value problems on corner domains 1988
[16] Elliptic problems in nonsmooth domains 1985
[17] , Elliptic partial differential equations of second order 1983
[18] , Weak shock reflection J. Fluid Mech. 2000 235 261
[19] , Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients Arch. Ration. Mech. Anal. 2000 91 151
[20] , Boundary value problems for quasilinear hyperbolic systems 1985
[21] One perspective on open problems in multi-dimensional conservation laws 1991 217 238
[22] Potential theory for regular and Mach reflection of a shock at a wedge Comm. Pure Appl. Math. 1994 593 624
[23] Ãcoulements de fluides parfaits en deux variables indépendantes de type espace. Réflexion dâun choc plan par un dièdre compressif Arch. Rational Mech. Anal. 1995 15 36
[24] Shock waves and reaction-diffusion equations 1983
Cité par Sources :