Groups, measures, and the NIP
Journal of the American Mathematical Society, Tome 21 (2008) no. 2, pp. 563-596

Voir la notice de l'article provenant de la source American Mathematical Society

We discuss measures, invariant measures on definable groups, and genericity, often in an NIP (failure of the independence property) environment. We complete the proof of the third author’s conjectures relating definably compact groups $G$ in saturated $o$-minimal structures to compact Lie groups. We also prove some other structural results about such $G$, for example the existence of a left invariant finitely additive probability measure on definable subsets of $G$. We finally introduce the new notion of “compact domination" (domination of a definable set by a compact space) and raise some new conjectures in the $o$-minimal case.
DOI : 10.1090/S0894-0347-07-00558-9

Hrushovski, Ehud 1 ; Peterzil, Ya’acov 2 ; Pillay, Anand 3

1 Hebrew University of Jerusalem, Department of Mathematics, Jerusalem, Israel
2 University of Haifa, Department of Mathematics and Computer Science, Haifa, Israel
3 University of Illinois, Department of Mathematics, Altgeld Hall, 1409 W Green Street Urbana, IL 61801, and University of Leeds, School of Mathematics, Leeds, LS2 9JT England
@article{10_1090_S0894_0347_07_00558_9,
     author = {Hrushovski, Ehud and Peterzil, Ya\^a€™acov and Pillay, Anand},
     title = {Groups, measures, and the {NIP}},
     journal = {Journal of the American Mathematical Society},
     pages = {563--596},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2008},
     doi = {10.1090/S0894-0347-07-00558-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00558-9/}
}
TY  - JOUR
AU  - Hrushovski, Ehud
AU  - Peterzil, Ya’acov
AU  - Pillay, Anand
TI  - Groups, measures, and the NIP
JO  - Journal of the American Mathematical Society
PY  - 2008
SP  - 563
EP  - 596
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00558-9/
DO  - 10.1090/S0894-0347-07-00558-9
ID  - 10_1090_S0894_0347_07_00558_9
ER  - 
%0 Journal Article
%A Hrushovski, Ehud
%A Peterzil, Ya’acov
%A Pillay, Anand
%T Groups, measures, and the NIP
%J Journal of the American Mathematical Society
%D 2008
%P 563-596
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00558-9/
%R 10.1090/S0894-0347-07-00558-9
%F 10_1090_S0894_0347_07_00558_9
Hrushovski, Ehud; Peterzil, Ya’acov; Pillay, Anand. Groups, measures, and the NIP. Journal of the American Mathematical Society, Tome 21 (2008) no. 2, pp. 563-596. doi: 10.1090/S0894-0347-07-00558-9

[1] Baisalov, Yerzhan, Poizat, Bruno Paires de structures o-minimales J. Symbolic Logic 1998 570 578

[2] Berarducci, Alessandro, Otero, Margarita An additive measure in o-minimal expansions of fields Q. J. Math. 2004 411 419

[3] Berarducci, Alessandro, Otero, Margarita Intersection theory for o-minimal manifolds Ann. Pure Appl. Logic 2001 87 119

[4] Berarducci, Alessandro, Otero, Margarita, Peterzil, Yaa’Cov, Pillay, Anand A descending chain condition for groups definable in o-minimal structures Ann. Pure Appl. Logic 2005 303 313

[5] Dolich, Alfred Forking and independence in o-minimal theories J. Symbolic Logic 2004 215 240

[6] Edmundo, Mã¡Rio J. Locally definable groups in o-minimal structures J. Algebra 2006 194 223

[7] Edmundo, Mã¡Rio J., Otero, Margarita Definably compact abelian groups J. Math. Log. 2004 163 180

[8] Grossberg, Rami, Iovino, Josã©, Lessmann, Olivier A primer of simple theories Arch. Math. Logic 2002 541 580

[9] Hewitt, Edwin, Ross, Kenneth A. Abstract harmonic analysis. Vol. I 1979

[10] Keisler, H. Jerome Measures and forking Ann. Pure Appl. Logic 1987 119 169

[11] Peterzil, Y., Pillay, A., Starchenko, S. Definably simple groups in o-minimal structures Trans. Amer. Math. Soc. 2000 4397 4419

[12] Peterzil, Y., Pillay, A., Starchenko, S. Linear groups definable in o-minimal structures J. Algebra 2002 1 23

[13] Peterzil, Ya’Acov, Starchenko, Sergei Definable homomorphisms of abelian groups in o-minimal structures Ann. Pure Appl. Logic 2000 1 27

[14] Peterzil, Ya’Acov, Starchenko, Sergei Uniform definability of the Weierstrass ℘ functions and generalized tori of dimension one Selecta Math. (N.S.) 2004 525 550

[15] Peterzil, Ya’Acov, Steinhorn, Charles Definable compactness and definable subgroups of o-minimal groups J. London Math. Soc. (2) 1999 769 786

[16] Pillay, Anand Type-definability, compact Lie groups, and o-minimality J. Math. Log. 2004 147 162

[17] Pillay, Anand Geometric stability theory 1996

[18] Poizat, Bruno A course in model theory 2000

[19] Shelah, Saharon Classification theory for elementary classes with the dependence property—a modest beginning Sci. Math. Jpn. 2004 265 316

Cité par Sources :