Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_07_00557_7,
author = {Werner, Wendelin},
title = {The conformally invariant measure on self-avoiding loops},
journal = {Journal of the American Mathematical Society},
pages = {137--169},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2008},
doi = {10.1090/S0894-0347-07-00557-7},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00557-7/}
}
TY - JOUR AU - Werner, Wendelin TI - The conformally invariant measure on self-avoiding loops JO - Journal of the American Mathematical Society PY - 2008 SP - 137 EP - 169 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00557-7/ DO - 10.1090/S0894-0347-07-00557-7 ID - 10_1090_S0894_0347_07_00557_7 ER -
%0 Journal Article %A Werner, Wendelin %T The conformally invariant measure on self-avoiding loops %J Journal of the American Mathematical Society %D 2008 %P 137-169 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00557-7/ %R 10.1090/S0894-0347-07-00557-7 %F 10_1090_S0894_0347_07_00557_7
Werner, Wendelin. The conformally invariant measure on self-avoiding loops. Journal of the American Mathematical Society, Tome 21 (2008) no. 1, pp. 137-169. doi: 10.1090/S0894-0347-07-00557-7
[1] Probabilistic techniques in analysis 1995
[2] , SLE martingales and the Virasoro algebra Phys. Lett. B 2003 309 316
[3] Hausdorff dimensions for ðð¿ð¸â Ann. Probab. 2004 2606 2629
[4] Cut points on Brownian paths Ann. Probab. 1989 1012 1036
[5] , Nonintersection exponents for Brownian paths. II. Estimates and applications to a random fractal Ann. Probab. 1990 981 1009
[6] , On conformal field theory and stochastic Loewner evolution Nuclear Phys. B 2004 279 302
[7] , Conformal restriction, highest-weight representations and SLE Comm. Math. Phys. 2003 105 122
[8] Conformally invariant processes in the plane 2005
[9] , , Values of Brownian intersection exponents. I. Half-plane exponents Acta Math. 2001 237 273
[10] , , Values of Brownian intersection exponents. I. Half-plane exponents Acta Math. 2001 237 273
[11] , , The dimension of the planar Brownian frontier is 4/3 Math. Res. Lett. 2001 13 23
[12] , , On the scaling limit of planar self-avoiding walk 2004 339 364
[13] , , Conformal restriction: the chordal case J. Amer. Math. Soc. 2003 917 955
[14] , Random walk loop soup Trans. Amer. Math. Soc. 2007 767 787
[15] , Universality for conformally invariant intersection exponents J. Eur. Math. Soc. (JEMS) 2000 291 328
[16] , The Brownian loop soup Probab. Theory Related Fields 2004 565 588
[17] On the connected components of the complement of a two-dimensional Brownian path 1991 323 338
[18] Some properties of planar Brownian motion 1992 111 235
[19] The canonic diffusion above the diffeomorphism group of the circle C. R. Acad. Sci. Paris Sér. I Math. 1999 325 329
[20] The fractal geometry of nature 1982
[21] On the asymptotic number of small components created by planar Brownian motion Stochastics Stochastics Rep. 1989 177 188
[22] , Kähler geometry of the infinite-dimensional homogeneous space ð Funktsional. Anal. i Prilozhen. 1987
[23] , Basic properties of SLE Ann. of Math. (2) 2005 883 924
[24] Scaling limits of loop-erased random walks and uniform spanning trees Israel J. Math. 2000 221 288
[25] Critical percolation in the plane: conformal invariance, Cardyâs formula, scaling limits C. R. Acad. Sci. Paris Sér. I Math. 2001 239 244
[26] Sur la forme des composantes connexes du complémentaire de la courbe brownienne plane Probab. Theory Related Fields 1994 307 337
[27] Random planar curves and Schramm-Loewner evolutions 2004 107 195
[28] SLEs as boundaries of clusters of Brownian loops C. R. Math. Acad. Sci. Paris 2003 481 486
[29] Girsanovâs transformation for ðð¿ð¸(ð ,ð) processes, intersection exponents and hiding exponents Ann. Fac. Sci. Toulouse Math. (6) 2004 121 147
[30] Conformal restriction and related questions Probab. Surv. 2005 145 190
[31] Loi de lâindice du lacet brownien, et distribution de Hartman-Watson Z. Wahrsch. Verw. Gebiete 1980 71 95
Cité par Sources :