Well-posedness of the free-surface incompressible Euler equations with or without surface tension
Journal of the American Mathematical Society, Tome 20 (2007) no. 3, pp. 829-930

Voir la notice de l'article provenant de la source American Mathematical Society

We provide a new method for treating free boundary problems in perfect fluids, and prove local-in-time well-posedness in Sobolev spaces for the free-surface incompressible 3D Euler equations with or without surface tension for arbitrary initial data, and without any irrotationality assumption on the fluid. This is a free boundary problem for the motion of an incompressible perfect liquid in vacuum, wherein the motion of the fluid interacts with the motion of the free-surface at highest-order.
DOI : 10.1090/S0894-0347-07-00556-5

Coutand, Daniel 1 ; Shkoller, Steve 1

1 Department of Mathematics, University of California at Davis, Davis, California 95616
@article{10_1090_S0894_0347_07_00556_5,
     author = {Coutand, Daniel and Shkoller, Steve},
     title = {Well-posedness of the free-surface incompressible {Euler} equations with or without surface tension},
     journal = {Journal of the American Mathematical Society},
     pages = {829--930},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2007},
     doi = {10.1090/S0894-0347-07-00556-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00556-5/}
}
TY  - JOUR
AU  - Coutand, Daniel
AU  - Shkoller, Steve
TI  - Well-posedness of the free-surface incompressible Euler equations with or without surface tension
JO  - Journal of the American Mathematical Society
PY  - 2007
SP  - 829
EP  - 930
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00556-5/
DO  - 10.1090/S0894-0347-07-00556-5
ID  - 10_1090_S0894_0347_07_00556_5
ER  - 
%0 Journal Article
%A Coutand, Daniel
%A Shkoller, Steve
%T Well-posedness of the free-surface incompressible Euler equations with or without surface tension
%J Journal of the American Mathematical Society
%D 2007
%P 829-930
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00556-5/
%R 10.1090/S0894-0347-07-00556-5
%F 10_1090_S0894_0347_07_00556_5
Coutand, Daniel; Shkoller, Steve. Well-posedness of the free-surface incompressible Euler equations with or without surface tension. Journal of the American Mathematical Society, Tome 20 (2007) no. 3, pp. 829-930. doi: 10.1090/S0894-0347-07-00556-5

[1] Adams, Robert A. Sobolev spaces 1975

[2] Ambrose, David M. Well-posedness of vortex sheets with surface tension SIAM J. Math. Anal. 2003 211 244

[3] Ambrose, David M., Masmoudi, Nader The zero surface tension limit of two-dimensional water waves Comm. Pure Appl. Math. 2005 1287 1315

[4] Beale, J. Thomas, Hou, Thomas Y., Lowengrub, John S. Growth rates for the linearized motion of fluid interfaces away from equilibrium Comm. Pure Appl. Math. 1993 1269 1301

[5] Craig, Walter An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits Comm. Partial Differential Equations 1985 787 1003

[6] Schneider, Guido, Wayne, C. Eugene The long-wave limit for the water wave problem. I. The case of zero surface tension Comm. Pure Appl. Math. 2000 1475 1535

[7] Coutand, Daniel, Shkoller, Steve Motion of an elastic solid inside an incompressible viscous fluid Arch. Ration. Mech. Anal. 2005 25 102

[8] Coutand, Daniel, Shkoller, Steve The interaction between quasilinear elastodynamics and the Navier-Stokes equations Arch. Ration. Mech. Anal. 2006 303 352

[9] Ebenfeld, Stefan 𝐿²-regularity theory of linear strongly elliptic Dirichlet systems of order 2𝑚 with minimal regularity in the coefficients Quart. Appl. Math. 2002 547 576

[10] Ebin, David G. The equations of motion of a perfect fluid with free boundary are not well posed Comm. Partial Differential Equations 1987 1175 1201

[11] Lannes, David Well-posedness of the water-waves equations J. Amer. Math. Soc. 2005 605 654

[12] Lindblad, Hans Well-posedness for the linearized motion of an incompressible liquid with free surface boundary Comm. Pure Appl. Math. 2003 153 197

[13] Lindblad, Hans Well-posedness for the motion of an incompressible liquid with free surface boundary Ann. of Math. (2) 2005 109 194

[14] Nalimov, V. I. The Cauchy-Poisson problem Dinamika Splošn. Sredy 1974

[15] Schweizer, Ben On the three-dimensional Euler equations with a free boundary subject to surface tension Ann. Inst. H. Poincaré C Anal. Non Linéaire 2005 753 781

[16] Solonnikov, V. A. Solvability of a problem on the evolution of a viscous incompressible fluid, bounded by a free surface, on a finite time interval Algebra i Analiz 1991 222 257

[17] Solonnikov, V. A., ŠčAdilov, V. E. A certain boundary value problem for the stationary system of Navier-Stokes equations Trudy Mat. Inst. Steklov. 1973

[18] Taylor, Michael E. Partial differential equations 1996

[19] Wu, Sijue Well-posedness in Sobolev spaces of the full water wave problem in 2-D Invent. Math. 1997 39 72

[20] Wu, Sijue Well-posedness in Sobolev spaces of the full water wave problem in 3-D J. Amer. Math. Soc. 1999 445 495

[21] Yosihara, Hideaki Gravity waves on the free surface of an incompressible perfect fluid of finite depth Publ. Res. Inst. Math. Sci. 1982 49 96

Cité par Sources :