Voir la notice de l'article provenant de la source American Mathematical Society
Coutand, Daniel 1 ; Shkoller, Steve 1
@article{10_1090_S0894_0347_07_00556_5,
author = {Coutand, Daniel and Shkoller, Steve},
title = {Well-posedness of the free-surface incompressible {Euler} equations with or without surface tension},
journal = {Journal of the American Mathematical Society},
pages = {829--930},
publisher = {mathdoc},
volume = {20},
number = {3},
year = {2007},
doi = {10.1090/S0894-0347-07-00556-5},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00556-5/}
}
TY - JOUR AU - Coutand, Daniel AU - Shkoller, Steve TI - Well-posedness of the free-surface incompressible Euler equations with or without surface tension JO - Journal of the American Mathematical Society PY - 2007 SP - 829 EP - 930 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00556-5/ DO - 10.1090/S0894-0347-07-00556-5 ID - 10_1090_S0894_0347_07_00556_5 ER -
%0 Journal Article %A Coutand, Daniel %A Shkoller, Steve %T Well-posedness of the free-surface incompressible Euler equations with or without surface tension %J Journal of the American Mathematical Society %D 2007 %P 829-930 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00556-5/ %R 10.1090/S0894-0347-07-00556-5 %F 10_1090_S0894_0347_07_00556_5
Coutand, Daniel; Shkoller, Steve. Well-posedness of the free-surface incompressible Euler equations with or without surface tension. Journal of the American Mathematical Society, Tome 20 (2007) no. 3, pp. 829-930. doi: 10.1090/S0894-0347-07-00556-5
[1] Sobolev spaces 1975
[2] Well-posedness of vortex sheets with surface tension SIAM J. Math. Anal. 2003 211 244
[3] , The zero surface tension limit of two-dimensional water waves Comm. Pure Appl. Math. 2005 1287 1315
[4] , , Growth rates for the linearized motion of fluid interfaces away from equilibrium Comm. Pure Appl. Math. 1993 1269 1301
[5] An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits Comm. Partial Differential Equations 1985 787 1003
[6] , The long-wave limit for the water wave problem. I. The case of zero surface tension Comm. Pure Appl. Math. 2000 1475 1535
[7] , Motion of an elastic solid inside an incompressible viscous fluid Arch. Ration. Mech. Anal. 2005 25 102
[8] , The interaction between quasilinear elastodynamics and the Navier-Stokes equations Arch. Ration. Mech. Anal. 2006 303 352
[9] ð¿Â²-regularity theory of linear strongly elliptic Dirichlet systems of order 2ð with minimal regularity in the coefficients Quart. Appl. Math. 2002 547 576
[10] The equations of motion of a perfect fluid with free boundary are not well posed Comm. Partial Differential Equations 1987 1175 1201
[11] Well-posedness of the water-waves equations J. Amer. Math. Soc. 2005 605 654
[12] Well-posedness for the linearized motion of an incompressible liquid with free surface boundary Comm. Pure Appl. Math. 2003 153 197
[13] Well-posedness for the motion of an incompressible liquid with free surface boundary Ann. of Math. (2) 2005 109 194
[14] The Cauchy-Poisson problem Dinamika Splošn. Sredy 1974
[15] On the three-dimensional Euler equations with a free boundary subject to surface tension Ann. Inst. H. Poincaré C Anal. Non Linéaire 2005 753 781
[16] Solvability of a problem on the evolution of a viscous incompressible fluid, bounded by a free surface, on a finite time interval Algebra i Analiz 1991 222 257
[17] , A certain boundary value problem for the stationary system of Navier-Stokes equations Trudy Mat. Inst. Steklov. 1973
[18] Partial differential equations 1996
[19] Well-posedness in Sobolev spaces of the full water wave problem in 2-D Invent. Math. 1997 39 72
[20] Well-posedness in Sobolev spaces of the full water wave problem in 3-D J. Amer. Math. Soc. 1999 445 495
[21] Gravity waves on the free surface of an incompressible perfect fluid of finite depth Publ. Res. Inst. Math. Sci. 1982 49 96
Cité par Sources :