Voir la notice de l'article provenant de la source American Mathematical Society
Tao, Terence 1 ; Vu, Van 2
@article{10_1090_S0894_0347_07_00555_3,
author = {Tao, Terence and Vu, Van},
title = {On the singularity probability of random {Bernoulli} matrices},
journal = {Journal of the American Mathematical Society},
pages = {603--628},
publisher = {mathdoc},
volume = {20},
number = {3},
year = {2007},
doi = {10.1090/S0894-0347-07-00555-3},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00555-3/}
}
TY - JOUR AU - Tao, Terence AU - Vu, Van TI - On the singularity probability of random Bernoulli matrices JO - Journal of the American Mathematical Society PY - 2007 SP - 603 EP - 628 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00555-3/ DO - 10.1090/S0894-0347-07-00555-3 ID - 10_1090_S0894_0347_07_00555_3 ER -
%0 Journal Article %A Tao, Terence %A Vu, Van %T On the singularity probability of random Bernoulli matrices %J Journal of the American Mathematical Society %D 2007 %P 603-628 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00555-3/ %R 10.1090/S0894-0347-07-00555-3 %F 10_1090_S0894_0347_07_00555_3
Tao, Terence; Vu, Van. On the singularity probability of random Bernoulli matrices. Journal of the American Mathematical Society, Tome 20 (2007) no. 3, pp. 603-628. doi: 10.1090/S0894-0347-07-00555-3
[1] Structure of sets with small sumset Astérisque 1999
[2] , , Rectification principles in additive number theory Discrete Comput. Geom. 1998 343 353
[3] An introduction to the geometry of numbers 1959
[4] A polynomial bound in Freimanâs theorem Duke Math. J. 2002 399 419
[5] On a lemma of Littlewood and Offord Bull. Amer. Math. Soc. 1945 898 902
[6] Foundations of a structural theory of set addition 1973
[7] , Sets with small sumset and rectification Bull. London Math. Soc. 2006 43 52
[8] Estimates for the concentration function of combinatorial number theory and probability Period. Math. Hungar. 1977 197 211
[9] Extremum problems with inequalities as subsidiary conditions 1948 187 204
[10] , , On the probability that a random ±1-matrix is singular J. Amer. Math. Soc. 1995 223 240
[11] On the determinant of (0,1) matrices Studia Sci. Math. Hungar. 1967 7 21
[12] On the determinant of random matrices Studia Sci. Math. Hungar. 1968 387 399
[13] On subspaces spanned by random selections of ±1 vectors J. Combin. Theory Ser. A 1988 124 133
[14] Generalized arithmetical progressions and sumsets Acta Math. Hungar. 1994 379 388
[15] An analog of Freimanâs theorem in groups Astérisque 1999
[16] , On random ±1 matrices: singularity and determinant Random Structures Algorithms 2006 1 23
Cité par Sources :