Puzzle geometry and rigidity: The Fibonacci cycle is hyperbolic
Journal of the American Mathematical Society, Tome 20 (2007) no. 3, pp. 629-673 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

We describe a new and robust method to prove rigidity results in complex dynamics. The new ingredient is the geometry of the critical puzzle pieces: under control of geometry and “complex bounds”, two generalized polynomial-like maps which admit a topological conjugacy, quasiconformal outside the filled-in Julia set, are indeed quasiconformally conjugate. The proof uses a new abstract removability-type result for quasiconformal maps, following ideas of Heinonen and Koskela and of Kallunki and Koskela, optimized for applications in complex dynamics. We prove, as the first application of this new method, that, for even criticalities distinct from two, the period two cycle of the Fibonacci renormalization operator is hyperbolic with $1$-dimensional unstable manifold.
DOI : 10.1090/S0894-0347-07-00550-4

Smania, Daniel  1 , 2

1 Institute for Mathematical Sciences, State University of New York at Stony Brook, Stony Brook, New York 11794-3660
2 Departamento de Matemática, ICMC-USP-Campus de São Carlos, Caixa Postal 668, São Carlos-SP, CEP 13560-970, Brazil
@article{10_1090_S0894_0347_07_00550_4,
     author = {Smania, Daniel},
     title = {Puzzle geometry and rigidity: {The} {Fibonacci} cycle is hyperbolic},
     journal = {Journal of the American Mathematical Society},
     pages = {629--673},
     year = {2007},
     volume = {20},
     number = {3},
     doi = {10.1090/S0894-0347-07-00550-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00550-4/}
}
TY  - JOUR
AU  - Smania, Daniel
TI  - Puzzle geometry and rigidity: The Fibonacci cycle is hyperbolic
JO  - Journal of the American Mathematical Society
PY  - 2007
SP  - 629
EP  - 673
VL  - 20
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00550-4/
DO  - 10.1090/S0894-0347-07-00550-4
ID  - 10_1090_S0894_0347_07_00550_4
ER  - 
%0 Journal Article
%A Smania, Daniel
%T Puzzle geometry and rigidity: The Fibonacci cycle is hyperbolic
%J Journal of the American Mathematical Society
%D 2007
%P 629-673
%V 20
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00550-4/
%R 10.1090/S0894-0347-07-00550-4
%F 10_1090_S0894_0347_07_00550_4
Smania, Daniel. Puzzle geometry and rigidity: The Fibonacci cycle is hyperbolic. Journal of the American Mathematical Society, Tome 20 (2007) no. 3, pp. 629-673. doi: 10.1090/S0894-0347-07-00550-4

[1] Ahlfors, Lars, Bers, Lipman Riemann’s mapping theorem for variable metrics Ann. of Math. (2) 1960 385 404

[2] Avila, Artur, Lyubich, Mikhail, De Melo, Welington Regular or stochastic dynamics in real analytic families of unimodal maps Invent. Math. 2003 451 550

[3] Bojarski, B. Remarks on Sobolev imbedding inequalities 1988 52 68

[4] Branner, Bodil Cubic polynomials: turning around the connectedness locus 1993 391 427

[5] Branner, Bodil, Hubbard, John H. The iteration of cubic polynomials. I. The global topology of parameter space Acta Math. 1988 143 206

[6] Bruin, Henk Topological conditions for the existence of absorbing Cantor sets Trans. Amer. Math. Soc. 1998 2229 2263

[7] Bruin, H., Keller, G., Nowicki, T., Van Strien, S. Wild Cantor attractors exist Ann. of Math. (2) 1996 97 130

[8] Buff, Xavier Fibonacci fixed point of renormalization Ergodic Theory Dynam. Systems 2000 1287 1317

[9] Graczyk, Jacek, Świa̧Tek, Grzegorz Induced expansion for quadratic polynomials Ann. Sci. École Norm. Sup. (4) 1996 399 482

[10] Graczyk, Jacek, Światek, Grzegorz Generic hyperbolicity in the logistic family Ann. of Math. (2) 1997 1 52

[11] Heinonen, Juha, Koskela, Pekka Definitions of quasiconformality Invent. Math. 1995 61 79

[12] Kallunki, Sari, Koskela, Pekka Exceptional sets for the definition of quasiconformality Amer. J. Math. 2000 735 743

[13] Keller, Gerhard, Nowicki, Tomasz Fibonacci maps re(al)visited Ergodic Theory Dynam. Systems 1995 99 120

[14] Lehto, O., Virtanen, K. I. Quasiconformal mappings in the plane 1973

[15] Levin, Genadi, Van Strien, Sebastian Local connectivity of the Julia set of real polynomials Ann. of Math. (2) 1998 471 541

[16] Lyubich, Mikhail Dynamics of quadratic polynomials. I, II Acta Math. 1997

[17] Lyubich, Mikhail Combinatorics, geometry and attractors of quasi-quadratic maps Ann. of Math. (2) 1994 347 404

[18] Lyubich, Mikhail Feigenbaum-Coullet-Tresser universality and Milnor’s hairiness conjecture Ann. of Math. (2) 1999 319 420

[19] Lyubich, Mikhail, Milnor, John The Fibonacci unimodal map J. Amer. Math. Soc. 1993 425 457

[20] De Melo, Welington, Van Strien, Sebastian One-dimensional dynamics 1993

[21] Mcmullen, Curtis T. Renormalization and 3-manifolds which fiber over the circle 1996

[22] Przytycki, Feliks, Rohde, Steffen Rigidity of holomorphic Collet-Eckmann repellers Ark. Mat. 1999 357 371

[23] Smania, Daniel Phase space universality for multimodal maps Bull. Braz. Math. Soc. (N.S.) 2005 225 274

[24] Smania, Daniel On the hyperbolicity of the period-doubling fixed point Trans. Amer. Math. Soc. 2006 1827 1846

[25] Sullivan, Dennis Bounds, quadratic differentials, and renormalization conjectures 1992 417 466

[26] Świa̧Tek, Grzegorz, Vargas, Edson Decay of geometry in the cubic family Ergodic Theory Dynam. Systems 1998 1311 1329

Cité par Sources :