@article{10_1090_S0894_0347_07_00550_4,
author = {Smania, Daniel},
title = {Puzzle geometry and rigidity: {The} {Fibonacci} cycle is hyperbolic},
journal = {Journal of the American Mathematical Society},
pages = {629--673},
year = {2007},
volume = {20},
number = {3},
doi = {10.1090/S0894-0347-07-00550-4},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00550-4/}
}
TY - JOUR AU - Smania, Daniel TI - Puzzle geometry and rigidity: The Fibonacci cycle is hyperbolic JO - Journal of the American Mathematical Society PY - 2007 SP - 629 EP - 673 VL - 20 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00550-4/ DO - 10.1090/S0894-0347-07-00550-4 ID - 10_1090_S0894_0347_07_00550_4 ER -
%0 Journal Article %A Smania, Daniel %T Puzzle geometry and rigidity: The Fibonacci cycle is hyperbolic %J Journal of the American Mathematical Society %D 2007 %P 629-673 %V 20 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-07-00550-4/ %R 10.1090/S0894-0347-07-00550-4 %F 10_1090_S0894_0347_07_00550_4
Smania, Daniel. Puzzle geometry and rigidity: The Fibonacci cycle is hyperbolic. Journal of the American Mathematical Society, Tome 20 (2007) no. 3, pp. 629-673. doi: 10.1090/S0894-0347-07-00550-4
[1] , Riemann’s mapping theorem for variable metrics Ann. of Math. (2) 1960 385 404
[2] , , Regular or stochastic dynamics in real analytic families of unimodal maps Invent. Math. 2003 451 550
[3] Remarks on Sobolev imbedding inequalities 1988 52 68
[4] Cubic polynomials: turning around the connectedness locus 1993 391 427
[5] , The iteration of cubic polynomials. I. The global topology of parameter space Acta Math. 1988 143 206
[6] Topological conditions for the existence of absorbing Cantor sets Trans. Amer. Math. Soc. 1998 2229 2263
[7] , , , Wild Cantor attractors exist Ann. of Math. (2) 1996 97 130
[8] Fibonacci fixed point of renormalization Ergodic Theory Dynam. Systems 2000 1287 1317
[9] , Induced expansion for quadratic polynomials Ann. Sci. École Norm. Sup. (4) 1996 399 482
[10] , Generic hyperbolicity in the logistic family Ann. of Math. (2) 1997 1 52
[11] , Definitions of quasiconformality Invent. Math. 1995 61 79
[12] , Exceptional sets for the definition of quasiconformality Amer. J. Math. 2000 735 743
[13] , Fibonacci maps re(al)visited Ergodic Theory Dynam. Systems 1995 99 120
[14] , Quasiconformal mappings in the plane 1973
[15] , Local connectivity of the Julia set of real polynomials Ann. of Math. (2) 1998 471 541
[16] Dynamics of quadratic polynomials. I, II Acta Math. 1997
[17] Combinatorics, geometry and attractors of quasi-quadratic maps Ann. of Math. (2) 1994 347 404
[18] Feigenbaum-Coullet-Tresser universality and Milnor’s hairiness conjecture Ann. of Math. (2) 1999 319 420
[19] , The Fibonacci unimodal map J. Amer. Math. Soc. 1993 425 457
[20] , One-dimensional dynamics 1993
[21] Renormalization and 3-manifolds which fiber over the circle 1996
[22] , Rigidity of holomorphic Collet-Eckmann repellers Ark. Mat. 1999 357 371
[23] Phase space universality for multimodal maps Bull. Braz. Math. Soc. (N.S.) 2005 225 274
[24] On the hyperbolicity of the period-doubling fixed point Trans. Amer. Math. Soc. 2006 1827 1846
[25] Bounds, quadratic differentials, and renormalization conjectures 1992 417 466
[26] , Decay of geometry in the cubic family Ergodic Theory Dynam. Systems 1998 1311 1329
Cité par Sources :