Voir la notice de l'article provenant de la source American Mathematical Society
Damanik, David 1, 2 ; Tcheremchantsev, Serguei 3
@article{10_1090_S0894_0347_06_00554_6,
author = {Damanik, David and Tcheremchantsev, Serguei},
title = {Upper bounds in quantum dynamics},
journal = {Journal of the American Mathematical Society},
pages = {799--827},
publisher = {mathdoc},
volume = {20},
number = {3},
year = {2007},
doi = {10.1090/S0894-0347-06-00554-6},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00554-6/}
}
TY - JOUR AU - Damanik, David AU - Tcheremchantsev, Serguei TI - Upper bounds in quantum dynamics JO - Journal of the American Mathematical Society PY - 2007 SP - 799 EP - 827 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00554-6/ DO - 10.1090/S0894-0347-06-00554-6 ID - 10_1090_S0894_0347_06_00554_6 ER -
%0 Journal Article %A Damanik, David %A Tcheremchantsev, Serguei %T Upper bounds in quantum dynamics %J Journal of the American Mathematical Society %D 2007 %P 799-827 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00554-6/ %R 10.1090/S0894-0347-06-00554-6 %F 10_1090_S0894_0347_06_00554_6
Damanik, David; Tcheremchantsev, Serguei. Upper bounds in quantum dynamics. Journal of the American Mathematical Society, Tome 20 (2007) no. 3, pp. 799-827. doi: 10.1090/S0894-0347-06-00554-6
[1] Localization at weak disorder: some elementary bounds Rev. Math. Phys. 1994 1163 1182
[2] , , , , Moment analysis for localization in random Schrödinger operators Invent. Math. 2006 343 413
[3] , Localization at large disorder and at extreme energies: an elementary derivation Comm. Math. Phys. 1993 245 278
[4] , , , Finite-volume fractional-moment criteria for Anderson localization Comm. Math. Phys. 2001 219 253
[5] Directions in mathematical quasicrystals 2000
[6] , Complex analysis 1997
[7] , , Fractal dimensions and the phenomenon of intermittency in quantum dynamics Duke Math. J. 2001 161 193
[8] , Universal lower bounds for quantum diffusion J. Funct. Anal. 1999 327 354
[9] , , Phase-averaged transport for quasi-periodic Hamiltonians Comm. Math. Phys. 2002 515 539
[10] , , , Spectral properties of one-dimensional quasi-crystals Comm. Math. Phys. 1989 527 543
[11] , On nonperturbative localization with quasi-periodic potential Ann. of Math. (2) 2000 835 879
[12] , Anderson localization for the band model 2000 67 79
[13] Connections between quantum dynamics and spectral properties of time-evolution operators 1993 59 68
[14] , Fractal dimensions and quantum evolution associated with sparse potential Jacobi matrices 2001 107 123
[15] Functions of one complex variable. II 1995
[16] , , , Schrödinger operators with application to quantum mechanics and global geometry 1987
[17] ð¼-continuity properties of one-dimensional quasicrystals Comm. Math. Phys. 1998 169 182
[18] Dynamical upper bounds for one-dimensional quasicrystals J. Math. Anal. Appl. 2005 327 341
[19] , , Uniform spectral properties of one-dimensional quasicrystals. III. ð¼-continuity Comm. Math. Phys. 2000 191 204
[20] , Multi-scale analysis implies strong dynamical localization Geom. Funct. Anal. 2001 11 29
[21] , , Power-law bounds on transfer matrices and quantum dynamics in one dimension. II J. Funct. Anal. 2004 362 387
[22] , Power-law bounds on transfer matrices and quantum dynamics in one dimension Comm. Math. Phys. 2003 513 534
[23] , , , Operators with singular continuous spectrum. IV. Hausdorff dimensions, rank one perturbations, and localization J. Anal. Math. 1996 153 200
[24] , , , Constructive proof of localization in the Anderson tight binding model Comm. Math. Phys. 1985 21 46
[25] , Absence of diffusion in the Anderson tight binding model for large disorder or low energy Comm. Math. Phys. 1983 151 184
[26] , , Unbounded quantum diffusion and a new class of level statistics 1992 43 59
[27] Dynamical localization II with an application to the almost Mathieu operator J. Statist. Phys. 1999 273 286
[28] , Dynamical localization for discrete and continuous random Schrödinger operators Comm. Math. Phys. 1998 323 341
[29] , Strong dynamical localization for the almost Mathieu model Rev. Math. Phys. 2001 755 765
[30] , , Transfer matrices and transport for Schrödinger operators Ann. Inst. Fourier (Grenoble) 2004 787 830
[31] , Bootstrap multiscale analysis and localization in random media Comm. Math. Phys. 2001 415 448
[32] On subordinacy and analysis of the spectrum of Schrödinger operators with two singular endpoints Proc. Roy. Soc. Edinburgh Sect. A 1989 213 229
[33] , On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators J. Math. Anal. Appl. 1987 30 56
[34] , Hölder continuity of the integrated density of states for quasi-periodic Schrödinger equations and averages of shifts of subharmonic functions Ann. of Math. (2) 2001 155 203
[35] The point spectrum of the one-dimensional Schrödinger operator Uspehi Mat. Nauk 1976 257 258
[36] , Lower bounds on wave packet propagation by packing dimensions of spectral measures Math. Phys. Electron. J. 1999
[37] , Intermittent lower bound on quantum diffusion Lett. Math. Phys. 1999 317 324
[38] Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local dâun théorème dâArnolâ²d et de Moser sur le tore de dimension 2 Comment. Math. Helv. 1983 453 502
[39] , , Resistance of one-dimensional quasicrystals Phys. A 1992 353 368
[40] , Power law growth for the resistance in the Fibonacci model J. Statist. Phys. 1991 715 723
[41] Metal-insulator transition for the almost Mathieu operator Ann. of Math. (2) 1999 1159 1175
[42] , Zero-dimensional spectral measures for quasi-periodic operators with analytic potential J. Statist. Phys. 2000 791 796
[43] , Anderson localization for the almost Mathieu equation. III. Semi-uniform localization, continuity of gaps, and measure of the spectrum Comm. Math. Phys. 1998 1 14
[44] , Power-law subordinacy and singular spectra. I. Half-line operators Acta Math. 1999 171 189
[45] , Power law subordinacy and singular spectra. II. Line operators Comm. Math. Phys. 2000 643 658
[46] , , Delocalization in random polymer models Comm. Math. Phys. 2003 27 48
[47] , Operators with singular continuous spectrum. III. Almost periodic Schrödinger operators Comm. Math. Phys. 1994 201 205
[48] , , , What determines the spreading of a wave packet? Phys. Rev. Lett. 1997 1959 1963
[49] Continued fractions 1997
[50] , , Dynamical upper bounds on wavepacket spreading Amer. J. Math. 2003 1165 1198
[51] , Solutions, spectrum, and dynamics for Schrödinger operators on infinite domains Duke Math. J. 2000 125 150
[52] , , Localization problem in one dimension: mapping and escape Phys. Rev. Lett. 1983 1870 1872
[53] Ljapunov indices determine absolutely continuous spectra of stationary random one-dimensional Schrödinger operators 1984 225 247
[54] A relation between a.c. spectrum of ergodic Jacobi matrices and the spectra of periodic approximants Comm. Math. Phys. 1993 183 192
[55] Quantum dynamics and decompositions of singular continuous spectra J. Funct. Anal. 1996 406 445
[56] , Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators Invent. Math. 1999 329 367
[57] , , Localization problem in one dimension: mapping and escape Phys. Rev. Lett. 1983 1870 1872
[58] Bounded eigenfunctions and absolutely continuous spectra for one-dimensional Schrödinger operators Proc. Amer. Math. Soc. 1996 3361 3369
[59] , Positive Lyapunov exponents for Schrödinger operators with quasi-periodic potentials Comm. Math. Phys. 1991 543 566
[60] The spectrum of a quasiperiodic Schrödinger operator Comm. Math. Phys. 1987 409 415
[61] Singular continuous spectrum on a Cantor set of zero Lebesgue measure for the Fibonacci Hamiltonian J. Statist. Phys. 1989 525 531
[62] Mixed lower bounds for quantum transport J. Funct. Anal. 2003 247 282
[63] Dynamical analysis of Schrödinger operators with growing sparse potentials Comm. Math. Phys. 2005 221 252
[64] How to prove dynamical localization Comm. Math. Phys. 2001 27 56
[65] , A new proof of localization in the Anderson tight binding model Comm. Math. Phys. 1989 285 299
[66] Analytic linearization of circle diffeomorphisms 2002 125 173
Cité par Sources :