Upper bounds in quantum dynamics
Journal of the American Mathematical Society, Tome 20 (2007) no. 3, pp. 799-827

Voir la notice de l'article provenant de la source American Mathematical Society

We develop a general method to bound the spreading of an entire wavepacket under Schrödinger dynamics from above. This method derives upper bounds on time-averaged moments of the position operator from lower bounds on norms of transfer matrices at complex energies. This general result is applied to the Fibonacci operator. We find that at sufficiently large coupling, all transport exponents take values strictly between zero and one. This is the first rigorous result on anomalous transport. For quasi-periodic potentials associated with trigonometric polynomials, we prove that all lower transport exponents and, under a weak assumption on the frequency, all upper transport exponents vanish for all phases if the Lyapunov exponent is uniformly bounded away from zero. By a well-known result of Herman, this assumption always holds at sufficiently large coupling. For the particular case of the almost Mathieu operator, our result applies for coupling greater than two.
DOI : 10.1090/S0894-0347-06-00554-6

Damanik, David 1, 2 ; Tcheremchantsev, Serguei 3

1 Department of Mathematics, 253–37, California Institute of Technology, Pasadena, California 91125
2 Department of Mathematics, MS-136, Rice University, Houston, Texas 77251
3 UMR 6628–MAPMO, Université d’ Orléans, B.P. 6759, F-45067 Orléans Cedex, France
@article{10_1090_S0894_0347_06_00554_6,
     author = {Damanik, David and Tcheremchantsev, Serguei},
     title = {Upper bounds in quantum dynamics},
     journal = {Journal of the American Mathematical Society},
     pages = {799--827},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2007},
     doi = {10.1090/S0894-0347-06-00554-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00554-6/}
}
TY  - JOUR
AU  - Damanik, David
AU  - Tcheremchantsev, Serguei
TI  - Upper bounds in quantum dynamics
JO  - Journal of the American Mathematical Society
PY  - 2007
SP  - 799
EP  - 827
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00554-6/
DO  - 10.1090/S0894-0347-06-00554-6
ID  - 10_1090_S0894_0347_06_00554_6
ER  - 
%0 Journal Article
%A Damanik, David
%A Tcheremchantsev, Serguei
%T Upper bounds in quantum dynamics
%J Journal of the American Mathematical Society
%D 2007
%P 799-827
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00554-6/
%R 10.1090/S0894-0347-06-00554-6
%F 10_1090_S0894_0347_06_00554_6
Damanik, David; Tcheremchantsev, Serguei. Upper bounds in quantum dynamics. Journal of the American Mathematical Society, Tome 20 (2007) no. 3, pp. 799-827. doi: 10.1090/S0894-0347-06-00554-6

[1] Aizenman, Michael Localization at weak disorder: some elementary bounds Rev. Math. Phys. 1994 1163 1182

[2] Aizenman, Michael, Elgart, Alexander, Naboko, Serguei, Schenker, Jeffrey H., Stolz, Gunter Moment analysis for localization in random Schrödinger operators Invent. Math. 2006 343 413

[3] Aizenman, Michael, Molchanov, Stanislav Localization at large disorder and at extreme energies: an elementary derivation Comm. Math. Phys. 1993 245 278

[4] Aizenman, Michael, Schenker, Jeffrey H., Friedrich, Roland M., Hundertmark, Dirk Finite-volume fractional-moment criteria for Anderson localization Comm. Math. Phys. 2001 219 253

[5] Directions in mathematical quasicrystals 2000

[6] Bak, Joseph, Newman, Donald J. Complex analysis 1997

[7] Barbaroux, Jean-Marie, Germinet, Franã§Ois, Tcheremchantsev, Serguei Fractal dimensions and the phenomenon of intermittency in quantum dynamics Duke Math. J. 2001 161 193

[8] Barbaroux, J. M., Tcheremchantsev, S. Universal lower bounds for quantum diffusion J. Funct. Anal. 1999 327 354

[9] Bellissard, Jean, Guarneri, Italo, Schulz-Baldes, Hermann Phase-averaged transport for quasi-periodic Hamiltonians Comm. Math. Phys. 2002 515 539

[10] Bellissard, J., Iochum, B., Scoppola, E., Testard, D. Spectral properties of one-dimensional quasi-crystals Comm. Math. Phys. 1989 527 543

[11] Bourgain, J., Goldstein, M. On nonperturbative localization with quasi-periodic potential Ann. of Math. (2) 2000 835 879

[12] Bourgain, J., Jitomirskaya, S. Anderson localization for the band model 2000 67 79

[13] Combes, Jean-Michel Connections between quantum dynamics and spectral properties of time-evolution operators 1993 59 68

[14] Combes, Jean-Michel, Mantica, Giorgio Fractal dimensions and quantum evolution associated with sparse potential Jacobi matrices 2001 107 123

[15] Conway, John B. Functions of one complex variable. II 1995

[16] Cycon, H. L., Froese, R. G., Kirsch, W., Simon, B. Schrödinger operators with application to quantum mechanics and global geometry 1987

[17] Damanik, David 𝛼-continuity properties of one-dimensional quasicrystals Comm. Math. Phys. 1998 169 182

[18] Damanik, David Dynamical upper bounds for one-dimensional quasicrystals J. Math. Anal. Appl. 2005 327 341

[19] Damanik, David, Killip, Rowan, Lenz, Daniel Uniform spectral properties of one-dimensional quasicrystals. III. 𝛼-continuity Comm. Math. Phys. 2000 191 204

[20] Damanik, D., Stollmann, P. Multi-scale analysis implies strong dynamical localization Geom. Funct. Anal. 2001 11 29

[21] Damanik, David, Sã¼Tå‘, Andrã¡S, Tcheremchantsev, Serguei Power-law bounds on transfer matrices and quantum dynamics in one dimension. II J. Funct. Anal. 2004 362 387

[22] Damanik, David, Tcheremchantsev, Serguei Power-law bounds on transfer matrices and quantum dynamics in one dimension Comm. Math. Phys. 2003 513 534

[23] Del Rio, R., Jitomirskaya, S., Last, Y., Simon, B. Operators with singular continuous spectrum. IV. Hausdorff dimensions, rank one perturbations, and localization J. Anal. Math. 1996 153 200

[24] Frã¶Hlich, J., Martinelli, F., Scoppola, E., Spencer, T. Constructive proof of localization in the Anderson tight binding model Comm. Math. Phys. 1985 21 46

[25] Frã¶Hlich, Jã¼Rg, Spencer, Thomas Absence of diffusion in the Anderson tight binding model for large disorder or low energy Comm. Math. Phys. 1983 151 184

[26] Geisel, T., Ketzmerick, R., Petschel, G. Unbounded quantum diffusion and a new class of level statistics 1992 43 59

[27] Germinet, Franã§Ois Dynamical localization II with an application to the almost Mathieu operator J. Statist. Phys. 1999 273 286

[28] Germinet, F., De Biã¨Vre, S. Dynamical localization for discrete and continuous random Schrödinger operators Comm. Math. Phys. 1998 323 341

[29] Germinet, Franã§Ois, Jitomirskaya, Svetlana Strong dynamical localization for the almost Mathieu model Rev. Math. Phys. 2001 755 765

[30] Germinet, Franã§Ois, Kiselev, Alexander, Tcheremchantsev, Serguei Transfer matrices and transport for Schrödinger operators Ann. Inst. Fourier (Grenoble) 2004 787 830

[31] Germinet, Franã§Ois, Klein, Abel Bootstrap multiscale analysis and localization in random media Comm. Math. Phys. 2001 415 448

[32] Gilbert, D. J. On subordinacy and analysis of the spectrum of Schrödinger operators with two singular endpoints Proc. Roy. Soc. Edinburgh Sect. A 1989 213 229

[33] Gilbert, D. J., Pearson, D. B. On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators J. Math. Anal. Appl. 1987 30 56

[34] Goldstein, Michael, Schlag, Wilhelm Hölder continuity of the integrated density of states for quasi-periodic Schrödinger equations and averages of shifts of subharmonic functions Ann. of Math. (2) 2001 155 203

[35] Gordon, A. Ja. The point spectrum of the one-dimensional Schrödinger operator Uspehi Mat. Nauk 1976 257 258

[36] Guarneri, I., Schulz-Baldes, H. Lower bounds on wave packet propagation by packing dimensions of spectral measures Math. Phys. Electron. J. 1999

[37] Guarneri, Italo, Schulz-Baldes, Hermann Intermittent lower bound on quantum diffusion Lett. Math. Phys. 1999 317 324

[38] Herman, Michael-R. Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnol′d et de Moser sur le tore de dimension 2 Comment. Math. Helv. 1983 453 502

[39] Iochum, B., Raymond, L., Testard, D. Resistance of one-dimensional quasicrystals Phys. A 1992 353 368

[40] Iochum, B., Testard, D. Power law growth for the resistance in the Fibonacci model J. Statist. Phys. 1991 715 723

[41] Jitomirskaya, Svetlana Ya. Metal-insulator transition for the almost Mathieu operator Ann. of Math. (2) 1999 1159 1175

[42] Jitomirskaya, S., Landrigan, M. Zero-dimensional spectral measures for quasi-periodic operators with analytic potential J. Statist. Phys. 2000 791 796

[43] Jitomirskaya, Svetlana Ya., Last, Yoram Anderson localization for the almost Mathieu equation. III. Semi-uniform localization, continuity of gaps, and measure of the spectrum Comm. Math. Phys. 1998 1 14

[44] Jitomirskaya, Svetlana, Last, Yoram Power-law subordinacy and singular spectra. I. Half-line operators Acta Math. 1999 171 189

[45] Jitomirskaya, Svetlana Ya., Last, Yoram Power law subordinacy and singular spectra. II. Line operators Comm. Math. Phys. 2000 643 658

[46] Jitomirskaya, S., Schulz-Baldes, H., Stolz, G. Delocalization in random polymer models Comm. Math. Phys. 2003 27 48

[47] Jitomirskaya, S., Simon, B. Operators with singular continuous spectrum. III. Almost periodic Schrödinger operators Comm. Math. Phys. 1994 201 205

[48] Ketzmerick, R., Kruse, K., Kraut, S., Geisel, T. What determines the spreading of a wave packet? Phys. Rev. Lett. 1997 1959 1963

[49] Khinchin, A. Ya. Continued fractions 1997

[50] Killip, Rowan, Kiselev, Alexander, Last, Yoram Dynamical upper bounds on wavepacket spreading Amer. J. Math. 2003 1165 1198

[51] Kiselev, A., Last, Y. Solutions, spectrum, and dynamics for Schrödinger operators on infinite domains Duke Math. J. 2000 125 150

[52] Kohmoto, Mahito, Kadanoff, Leo P., Tang, Chao Localization problem in one dimension: mapping and escape Phys. Rev. Lett. 1983 1870 1872

[53] Kotani, Shinichi Ljapunov indices determine absolutely continuous spectra of stationary random one-dimensional Schrödinger operators 1984 225 247

[54] Last, Y. A relation between a.c. spectrum of ergodic Jacobi matrices and the spectra of periodic approximants Comm. Math. Phys. 1993 183 192

[55] Last, Yoram Quantum dynamics and decompositions of singular continuous spectra J. Funct. Anal. 1996 406 445

[56] Last, Yoram, Simon, Barry Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators Invent. Math. 1999 329 367

[57] Kohmoto, Mahito, Kadanoff, Leo P., Tang, Chao Localization problem in one dimension: mapping and escape Phys. Rev. Lett. 1983 1870 1872

[58] Simon, Barry Bounded eigenfunctions and absolutely continuous spectra for one-dimensional Schrödinger operators Proc. Amer. Math. Soc. 1996 3361 3369

[59] Sorets, Eugene, Spencer, Thomas Positive Lyapunov exponents for Schrödinger operators with quasi-periodic potentials Comm. Math. Phys. 1991 543 566

[60] Sã¼Tå‘, Andrã¡S The spectrum of a quasiperiodic Schrödinger operator Comm. Math. Phys. 1987 409 415

[61] Sã¼Tå‘, Andrã¡S Singular continuous spectrum on a Cantor set of zero Lebesgue measure for the Fibonacci Hamiltonian J. Statist. Phys. 1989 525 531

[62] Tcheremchantsev, Serguei Mixed lower bounds for quantum transport J. Funct. Anal. 2003 247 282

[63] Tcheremchantsev, Serguei Dynamical analysis of Schrödinger operators with growing sparse potentials Comm. Math. Phys. 2005 221 252

[64] Tcheremchantsev, Serguei How to prove dynamical localization Comm. Math. Phys. 2001 27 56

[65] Von Dreifus, Henrique, Klein, Abel A new proof of localization in the Anderson tight binding model Comm. Math. Phys. 1989 285 299

[66] Yoccoz, Jean-Christophe Analytic linearization of circle diffeomorphisms 2002 125 173

Cité par Sources :