Schubert polynomials for the affine Grassmannian
Journal of the American Mathematical Society, Tome 21 (2008) no. 1, pp. 259-281

Voir la notice de l'article provenant de la source American Mathematical Society

Confirming a conjecture of Mark Shimozono, we identify polynomial representatives for the Schubert classes of the affine Grassmannian as the $k$-Schur functions in homology and affine Schur functions in cohomology. The results are obtained by connecting earlier combinatorial work of ours to certain subalgebras of Kostant and Kumar’s nilHecke ring and to work of Peterson on the homology of based loops on a compact group. As combinatorial corollaries, we settle a number of positivity conjectures concerning $k$-Schur functions, affine Stanley symmetric functions and cylindric Schur functions.
DOI : 10.1090/S0894-0347-06-00553-4

Lam, Thomas 1

1 Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
@article{10_1090_S0894_0347_06_00553_4,
     author = {Lam, Thomas},
     title = {Schubert polynomials for the affine {Grassmannian}},
     journal = {Journal of the American Mathematical Society},
     pages = {259--281},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2008},
     doi = {10.1090/S0894-0347-06-00553-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00553-4/}
}
TY  - JOUR
AU  - Lam, Thomas
TI  - Schubert polynomials for the affine Grassmannian
JO  - Journal of the American Mathematical Society
PY  - 2008
SP  - 259
EP  - 281
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00553-4/
DO  - 10.1090/S0894-0347-06-00553-4
ID  - 10_1090_S0894_0347_06_00553_4
ER  - 
%0 Journal Article
%A Lam, Thomas
%T Schubert polynomials for the affine Grassmannian
%J Journal of the American Mathematical Society
%D 2008
%P 259-281
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00553-4/
%R 10.1090/S0894-0347-06-00553-4
%F 10_1090_S0894_0347_06_00553_4
Lam, Thomas. Schubert polynomials for the affine Grassmannian. Journal of the American Mathematical Society, Tome 21 (2008) no. 1, pp. 259-281. doi: 10.1090/S0894-0347-06-00553-4

[1] Arabia, Alberto Cohomologie 𝑇-équivariante de la variété de drapeaux d’un groupe de Kac-Moody Bull. Soc. Math. France 1989 129 165

[2] Bernå¡Teä­N, I. N., Gel′Fand, I. M., Gel′Fand, S. I. Schubert cells, and the cohomology of the spaces 𝐺/𝑃 Uspehi Mat. Nauk 1973 3 26

[3] Bezrukavnikov, Roman, Finkelberg, Michael, Mirkoviä‡, Ivan Equivariant homology and 𝐾-theory of affine Grassmannians and Toda lattices Compos. Math. 2005 746 768

[4] Bott, Raoul The space of loops on a Lie group Michigan Math. J. 1958 35 61

[5] Edelman, Paul, Greene, Curtis Balanced tableaux Adv. in Math. 1987 42 99

[6] Fomin, Sergey, Greene, Curtis Noncommutative Schur functions and their applications Discrete Math. 1998 179 200

[7] Fomin, Sergey, Stanley, Richard P. Schubert polynomials and the nil-Coxeter algebra Adv. Math. 1994 196 207

[8] Gaitsgory, D. Construction of central elements in the affine Hecke algebra via nearby cycles Invent. Math. 2001 253 280

[9] Garland, Howard, Raghunathan, M. S. A Bruhat decomposition for the loop space of a compact group: a new approach to results of Bott Proc. Nat. Acad. Sci. U.S.A. 1975 4716 4717

[10] Graham, William Positivity in equivariant Schubert calculus Duke Math. J. 2001 599 614

[11] Haiman, Mark Hilbert schemes, polygraphs and the Macdonald positivity conjecture J. Amer. Math. Soc. 2001 941 1006

[12] Humphreys, James E. Reflection groups and Coxeter groups 1990

[13] Kostant, Bertram, Kumar, Shrawan The nil Hecke ring and cohomology of 𝐺/𝑃 for a Kac-Moody group 𝐺 Proc. Nat. Acad. Sci. U.S.A. 1986 1543 1545

[14] Kostant, Bertram, Kumar, Shrawan 𝑇-equivariant 𝐾-theory of generalized flag varieties Proc. Nat. Acad. Sci. U.S.A. 1987 4351 4354

[15] Kumar, Shrawan Kac-Moody groups, their flag varieties and representation theory 2002

[16] Lapointe, L., Lascoux, A., Morse, J. Tableau atoms and a new Macdonald positivity conjecture Duke Math. J. 2003 103 146

[17] Lapointe, L., Morse, J. Schur function analogs for a filtration of the symmetric function space J. Combin. Theory Ser. A 2003 191 224

[18] Lascoux, Alain, Schã¼Tzenberger, Marcel-Paul Polynômes de Schubert C. R. Acad. Sci. Paris Sér. I Math. 1982 447 450

[19] Lascoux, Alain, Schã¼Tzenberger, Marcel-Paul Schubert polynomials and the Littlewood-Richardson rule Lett. Math. Phys. 1985 111 124

[20] Macdonald, I. G. Symmetric functions and Hall polynomials 1979

[21] Postnikov, Alexander Affine approach to quantum Schubert calculus Duke Math. J. 2005 473 509

[22] Pressley, Andrew, Segal, Graeme Loop groups 1986

Cité par Sources :