Voir la notice de l'article provenant de la source American Mathematical Society
Tian, Gang 1 ; Zhu, Xiaohua 2
@article{10_1090_S0894_0347_06_00552_2,
author = {Tian, Gang and Zhu, Xiaohua},
title = {Convergence of {K\~A{\textcurrency}hler-Ricci} flow},
journal = {Journal of the American Mathematical Society},
pages = {675--699},
publisher = {mathdoc},
volume = {20},
number = {3},
year = {2007},
doi = {10.1090/S0894-0347-06-00552-2},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00552-2/}
}
TY - JOUR AU - Tian, Gang AU - Zhu, Xiaohua TI - Convergence of Kähler-Ricci flow JO - Journal of the American Mathematical Society PY - 2007 SP - 675 EP - 699 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00552-2/ DO - 10.1090/S0894-0347-06-00552-2 ID - 10_1090_S0894_0347_06_00552_2 ER -
%0 Journal Article %A Tian, Gang %A Zhu, Xiaohua %T Convergence of Kähler-Ricci flow %J Journal of the American Mathematical Society %D 2007 %P 675-699 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00552-2/ %R 10.1090/S0894-0347-06-00552-2 %F 10_1090_S0894_0347_06_00552_2
Tian, Gang; Zhu, Xiaohua. Convergence of Kähler-Ricci flow. Journal of the American Mathematical Society, Tome 20 (2007) no. 3, pp. 675-699. doi: 10.1090/S0894-0347-06-00552-2
[1] , Comparison of two capacities in ð¶â¿ Math. Z. 1984 407 417
[2] , A new capacity for plurisubharmonic functions Acta Math. 1982 1 40
[3] Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds Invent. Math. 1985 359 372
[4] , Ricci flow on Kähler-Einstein surfaces Invent. Math. 2002 487 544
[5] , Ricci flow on Kähler-Einstein manifolds Duke Math. J. 2006 17 73
[6] , , Kähler-Ricci solitons on compact complex manifolds with ð¶â(ð)>0 Geom. Funct. Anal. 2005 697 719
[7] An obstruction to the existence of Einstein Kähler metrics Invent. Math. 1983 437 443
[8] Kähler-Einstein metrics and integral invariants 1988
[9] Three-manifolds with positive Ricci curvature J. Differential Geometry 1982 255 306
[10] The complex Monge-Ampère equation Acta Math. 1998 69 117
[11] ð¾-energy maps integrating Futaki invariants Tohoku Math. J. (2) 1986 575 593
[12] Kähler-Einstein metrics with positive scalar curvature Invent. Math. 1997 1 37
[13] , Uniqueness of Kähler-Ricci solitons Acta Math. 2000 271 305
[14] , A new holomorphic invariant and uniqueness of Kähler-Ricci solitons Comment. Math. Helv. 2002 297 325
[15] On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I Comm. Pure Appl. Math. 1978 339 411
[16] Kähler-Ricci soliton typed equations on compact complex manifolds with ð¶â(ð)>0 J. Geom. Anal. 2000 759 774
Cité par Sources :