Convergence of Kähler-Ricci flow
Journal of the American Mathematical Society, Tome 20 (2007) no. 3, pp. 675-699

Voir la notice de l'article provenant de la source American Mathematical Society

In this paper, we prove a theorem on convergence of Kähler-Ricci flow on a compact Kähler manifold which admits a Kähler-Ricci soliton.
DOI : 10.1090/S0894-0347-06-00552-2

Tian, Gang 1 ; Zhu, Xiaohua 2

1 Department of Mathematics, Princeton University, Princeton, New Jersey 08544
2 Department of Mathematics, Peking University, Beijing, 100871, People’s Republic of China
@article{10_1090_S0894_0347_06_00552_2,
     author = {Tian, Gang and Zhu, Xiaohua},
     title = {Convergence of {K\~A{\textcurrency}hler-Ricci} flow},
     journal = {Journal of the American Mathematical Society},
     pages = {675--699},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2007},
     doi = {10.1090/S0894-0347-06-00552-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00552-2/}
}
TY  - JOUR
AU  - Tian, Gang
AU  - Zhu, Xiaohua
TI  - Convergence of Kähler-Ricci flow
JO  - Journal of the American Mathematical Society
PY  - 2007
SP  - 675
EP  - 699
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00552-2/
DO  - 10.1090/S0894-0347-06-00552-2
ID  - 10_1090_S0894_0347_06_00552_2
ER  - 
%0 Journal Article
%A Tian, Gang
%A Zhu, Xiaohua
%T Convergence of Kähler-Ricci flow
%J Journal of the American Mathematical Society
%D 2007
%P 675-699
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00552-2/
%R 10.1090/S0894-0347-06-00552-2
%F 10_1090_S0894_0347_06_00552_2
Tian, Gang; Zhu, Xiaohua. Convergence of Kähler-Ricci flow. Journal of the American Mathematical Society, Tome 20 (2007) no. 3, pp. 675-699. doi: 10.1090/S0894-0347-06-00552-2

[1] Alexander, Herbert J., Taylor, B. A. Comparison of two capacities in 𝐶ⁿ Math. Z. 1984 407 417

[2] Bedford, Eric, Taylor, B. A. A new capacity for plurisubharmonic functions Acta Math. 1982 1 40

[3] Cao, Huai Dong Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds Invent. Math. 1985 359 372

[4] Chen, X. X., Tian, G. Ricci flow on Kähler-Einstein surfaces Invent. Math. 2002 487 544

[5] Chen, X. X., Tian, G. Ricci flow on Kähler-Einstein manifolds Duke Math. J. 2006 17 73

[6] Cao, Huai-Dong, Tian, Gang, Zhu, Xiaohua Kähler-Ricci solitons on compact complex manifolds with 𝐶₁(𝑀)>0 Geom. Funct. Anal. 2005 697 719

[7] Futaki, A. An obstruction to the existence of Einstein Kähler metrics Invent. Math. 1983 437 443

[8] Futaki, Akito Kähler-Einstein metrics and integral invariants 1988

[9] Hamilton, Richard S. Three-manifolds with positive Ricci curvature J. Differential Geometry 1982 255 306

[10] Koå‚Odziej, Så‚Awomir The complex Monge-Ampère equation Acta Math. 1998 69 117

[11] Mabuchi, Toshiki 𝐾-energy maps integrating Futaki invariants Tohoku Math. J. (2) 1986 575 593

[12] Tian, Gang Kähler-Einstein metrics with positive scalar curvature Invent. Math. 1997 1 37

[13] Tian, Gang, Zhu, Xiaohua Uniqueness of Kähler-Ricci solitons Acta Math. 2000 271 305

[14] Tian, Gang, Zhu, Xiaohua A new holomorphic invariant and uniqueness of Kähler-Ricci solitons Comment. Math. Helv. 2002 297 325

[15] Yau, Shing Tung On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I Comm. Pure Appl. Math. 1978 339 411

[16] Zhu, Xiaohua Kähler-Ricci soliton typed equations on compact complex manifolds with 𝐶₁(𝑀)>0 J. Geom. Anal. 2000 759 774

Cité par Sources :