Global well-posedness of the Benjamin–Ono equation in low-regularity spaces
Journal of the American Mathematical Society, Tome 20 (2007) no. 3, pp. 753-798

Voir la notice de l'article provenant de la source American Mathematical Society

We prove that the Benjamin–Ono initial-value problem is globally well-posed in the Banach spaces $H^\sigma _r(\mathbb {R})$, $\sigma \geq 0$, of real-valued Sobolev functions.
DOI : 10.1090/S0894-0347-06-00551-0

Ionescu, Alexandru 1 ; Kenig, Carlos 2

1 Department of Mathematics, University of Wisconsin, 480 Lincoln Drive, Van Vleck Hall, Madison, Wisconsin 53706
2 Department of Mathematics, University of Chicago, 5734 University Ave, Chicago, Illinois 60637-1514
@article{10_1090_S0894_0347_06_00551_0,
     author = {Ionescu, Alexandru and Kenig, Carlos},
     title = {Global well-posedness of the {Benjamin\^a€“Ono} equation in low-regularity spaces},
     journal = {Journal of the American Mathematical Society},
     pages = {753--798},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2007},
     doi = {10.1090/S0894-0347-06-00551-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00551-0/}
}
TY  - JOUR
AU  - Ionescu, Alexandru
AU  - Kenig, Carlos
TI  - Global well-posedness of the Benjamin–Ono equation in low-regularity spaces
JO  - Journal of the American Mathematical Society
PY  - 2007
SP  - 753
EP  - 798
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00551-0/
DO  - 10.1090/S0894-0347-06-00551-0
ID  - 10_1090_S0894_0347_06_00551_0
ER  - 
%0 Journal Article
%A Ionescu, Alexandru
%A Kenig, Carlos
%T Global well-posedness of the Benjamin–Ono equation in low-regularity spaces
%J Journal of the American Mathematical Society
%D 2007
%P 753-798
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-06-00551-0/
%R 10.1090/S0894-0347-06-00551-0
%F 10_1090_S0894_0347_06_00551_0
Ionescu, Alexandru; Kenig, Carlos. Global well-posedness of the Benjamin–Ono equation in low-regularity spaces. Journal of the American Mathematical Society, Tome 20 (2007) no. 3, pp. 753-798. doi: 10.1090/S0894-0347-06-00551-0

[1] Bourgain, J. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations Geom. Funct. Anal. 1993 107 156

[2] Colliander, J., Kenig, C., Staffilani, G. Local well-posedness for dispersion-generalized Benjamin-Ono equations Differential Integral Equations 2003 1441 1472

[3] Ginibre, J., Velo, G. Smoothing properties and existence of solutions for the generalized Benjamin-Ono equation J. Differential Equations 1991 150 212

[4] Iã³Rio, Rafael Josã©, Jr. On the Cauchy problem for the Benjamin-Ono equation Comm. Partial Differential Equations 1986 1031 1081

[5] Kenig, Carlos E., Koenig, Kenneth D. On the local well-posedness of the Benjamin-Ono and modified Benjamin-Ono equations Math. Res. Lett. 2003 879 895

[6] Kenig, Carlos E., Ponce, Gustavo, Vega, Luis Well-posedness of the initial value problem for the Korteweg-de Vries equation J. Amer. Math. Soc. 1991 323 347

[7] Klainerman, S., Machedon, M. Space-time estimates for null forms and the local existence theorem Comm. Pure Appl. Math. 1993 1221 1268

[8] Klainerman, Sergiu, Selberg, Sigmund Remark on the optimal regularity for equations of wave maps type Comm. Partial Differential Equations 1997 901 918

[9] Koch, H., Tzvetkov, N. On the local well-posedness of the Benjamin-Ono equation in 𝐻^{𝑠}(ℝ) Int. Math. Res. Not. 2003 1449 1464

[10] Koch, H., Tzvetkov, N. Nonlinear wave interactions for the Benjamin-Ono equation Int. Math. Res. Not. 2005 1833 1847

[11] Molinet, L., Saut, J. C., Tzvetkov, N. Ill-posedness issues for the Benjamin-Ono and related equations SIAM J. Math. Anal. 2001 982 988

[12] Ono, Hiroaki Algebraic solitary waves in stratified fluids J. Phys. Soc. Japan 1975 1082 1091

[13] Ponce, Gustavo On the global well-posedness of the Benjamin-Ono equation Differential Integral Equations 1991 527 542

[14] Saut, J.-C. Sur quelques généralisations de l’équation de Korteweg-de Vries J. Math. Pures Appl. (9) 1979 21 61

[15] Tao, Terence Global regularity of wave maps. I. Small critical Sobolev norm in high dimension Internat. Math. Res. Notices 2001 299 328

[16] Tao, Terence Global regularity of wave maps. II. Small energy in two dimensions Comm. Math. Phys. 2001 443 544

[17] Tao, Terence Multilinear weighted convolution of 𝐿²-functions, and applications to nonlinear dispersive equations Amer. J. Math. 2001 839 908

[18] Tao, Terence Global well-posedness of the Benjamin-Ono equation in 𝐻¹(𝑅) J. Hyperbolic Differ. Equ. 2004 27 49

[19] Tataru, Daniel Local and global results for wave maps. I Comm. Partial Differential Equations 1998 1781 1793

[20] Tataru, Daniel On global existence and scattering for the wave maps equation Amer. J. Math. 2001 37 77

[21] Tom, Michael Mudi Smoothing properties of some weak solutions of the Benjamin-Ono equation Differential Integral Equations 1990 683 694

Cité par Sources :